

Team Leader

Dr. S.C. Dhiman,

Chairman, CGWB

Principal Contributors

Mr. Sunil Kumar, Suptg. Hydrogeologist

Mr. S.K. Sinha, Scientist -D

Mr. Rajesh Chandra, Scientist –C

Ms. Anita Kujur, Scientist -C

Mr. B.K. Sahoo, Scientist - C

Ms. D. Dhayamalar, Scientist -C

Ms. Rani V.R, Scientist -C

Mr. S.K. Swaroop, Scientist -B

Mr. J.R. Verma, Scientist - B

Contributors

Dr. D. Saha, Regional Director

Mr. G. Sudarshan, Suptdg. Hydrogeologist

Mr. A.K. Agrawal, Suptdg. Hydrogeologist

Ms. Mini Chandran, Scientist -C

Mr. Ranjan Kumar Ray, Scientist -C

Mr. R.M. Verma, Scientist -B

Ms. Gargee M.B. Sharma, Asst. Hydrogeologist

Ms. Sumita Sarkar, Asst. Hydrogeologist

Mr. J.K. Tandon, Draftsman

AQUIFER SYSTEMS of INDIA

Compiled Under Supervision of

Dr. S C Dhiman Chairman

CENTRAL GROUND WATER BOARD

MINISTRY OF WATER RESOURCES

GOVERNMENT OF INDIA

2012

Table 26: State wise Distribution and Characteristics of Schist Aquifer System

	Major	Major Aquifers (Area in sq km)	sq km)				Aquife	Aquifer Properties				
STATE NAME	Schist	Phylite	Slate	Aquifer	Type of	Thickness of Weathered Zone	Fractures	DTW (Dec.Avg)	Transmissivity	Yield	Specific Yield	Quality (ECin
	1008	2002	8003	System	Adoner	m	mbgl	mbgl	m²/day	m²/day	%	Micromhas/cm)
Andhra Pradesh	13386	106		Single	Unconfined Semi-Confined	5-45	20-170	5-10	2-80	40 - 100	Upto 3	1000-3000
Arunachal Pradesh	1228	1644				Not	Not Explored					500-750
Bihar	12		242	Single	Unconfined to Semi-Confined	4-32	15-112	5-10	3.35	15-65	Upta 1,5	500-1000
Chhattisgarh	23	1495	14	Single	Unconfined, to Semi-Confined	20-60	20-80	5-10	3.70	100-300	Upto 1,5	500-1000
Goa	068			Single	Unconfined, Semi-confinedto confined	8	20-80	5-10	3.70	100 - 300	Upto 2	> 500
Gujarat	7622	816		Single	Unconfined, Semi-confined to confined	10-72	30-40	10-20	2.65	40-120	Upto 2	1000-5000
Himachal Pradesh	2694	3187	12045	Single	Unconfined, Semi-confined to confined	10-44	10-70	10-20	2-65	2,73-43.2	Upto 1.5	500-1000
Jammu & Kashmir	3365	452	2288	Single	Unconfined to Semi-confined	6-15	100-140	10-20	2.60	12-360	Upto 1.5	> 500
Sharkhand	2299	7703		Single	Unconfined to Semi-confined	10-65	10:100	5-10	4-80	3.95	Upto 1.5	500-1000
Karnataka	28458			Single	Unconfined to Semi-confined	8	09	10-20	4-80	86.4-562	Upto 2	500-2000
Kerala	419						Not Explored					
Madhya Pradesh	2300	4147		Single	Unconfined to Semi-confined	15-25	60-175	10-20		70-350		500-1000
Maharashtra	5530			Single	Unconfined to Semi-confined	12-30	20-60	5-10	4-90	10-33	Upto 1,5	500-1000
Orissa	1115	3730		Single	Unconfined to Semi-confined	15 - 20	<180	5-10	2-60	86-173	Upto 1.5	> 500
Rajasthan	4419	2312	541	Single	Unconfined to Semi-confined	10-80	25-150	10-20	5-84	30-60	Upto5-2	1000-2500
Sikkim	1661			Single	Unconfined to Semi-confined			5-10				> 500
Tamil Nadu	Ŕ	383		Single	Unconfined to Semi-confined			5-10				
Uttarakhand	9023	3954	1191	Single	Unconfined to Semi-confined	20-70	30-150	5-10	2-60	30-60	Upto 1	500-1000
Uttar Pradesh		1453		Single	Unconfined to Semi-confined	10-50	20-70	10-20	5-50	12.60	Upto1	500-1000
West Bengal	2561	702		alguis	Unconfined to Semi-confined	10-50	20-70	5-10	5-80	20-70	Upto 1.2	500-1000
Total Area	93026	31589	16321									

DTW: Depth to water level

m bgl. Meter below ground level

INFORMATION / DATA SOURCE

- 1. Agricultural Department, Ministry of Agriculture, Govt. of India
- 2. Central Ground Water Board, Ministry of Water Resources, Govt. of India
- 3. Central Pollution Control Board, Ministry of Environment & Forest, Govt. of India
- 4. Central Water Commission, Ministry of Water Resources, Govt. of India
- 5. Directorate of Census, Ministry of Home Affairs, Government of India
- 6. Election Commission of India
- 7. Forest Survey of India, Ministry of Environment & Forest, Govt. of India
- 8. Geological Survey of India, Ministry of Mines, Government of India
- 9. India Metrological Department, Ministry of Earth Sciences, Government of India
- 10. Survey of India, Ministry of Science & Technology, Government of India

WAY FORWARD

- This compilation provides valuable information on the areal and vertical extents of major aquifers and their characteristics. This will serve as the foundation for the National Aquifer Mapping Programme being contemplated during the XII and XIII Plan period, which aims at detailed mapping of the aquifers on 1:50,000 or larger scales.
- However, considering the diversity of geomorphic and hydrogeological settings and the hydrochemical variations in the aquifer systems in the country, the present compilation is the starting point to formulate micro level strategies for ensuring long-term sustainability of ground water resources to achieve water and food security of the nation.
- Since, ground water is mostly being developed in India in unscientific manner, looking forward in this
 direction to enable the stakeholders to manage their own water resources on scientific and even at the
 community level; attempt has made to outline the issues, approach and activities for initiating the national aquifer mapping programme for detailed understanding of aquifer systems and planning ground
 water development and management strategies.
- The national aquifer mapping involves collation, integration of existing data from various sources, data gap identification and generation of additional data required for the refinement of aquifer disposition, its geometry and characteristics. The outcome of the national aquifer mapping programme would culminate in delineating the regional / local level aquifers, typology, geometry, ground water availability, hydraulic characteristics and quality aspects for developing aquifer wise ground water management plans in an integrated water management approach.
- Strategies for ensuring long-term sustainability of ground water resources in identified aquifers by adopting the supply side and demand side management. This may involve various measures such as recharge augmentation, ground water regulation, water conservation, aquifer remediation, improvements in water use efficiency etc. depending on the characteristics of aquifers and the vulnerability of the aquifers to ensure the environmental and ecological balances.
- In order to support the scientifically viable management interventions for aquifer management, it is required to develop calibrated ground water flow and solute transport models at appropriate scales to function as Decision Support Systems.
- Finally, the aquifer mapping programme aims at developing a user friendly web based Aquifer Information and Management System which will enable the stakeholders to execute the aquifer management and water security plans at the local level. This will facilitate management of ground water resources in a scientific way even by the community itself.

Table 36: Ground Water Management Plan-a Summary

SI. No.	Aquifer	Total Area (Sq. Km.)	Priority Area Suitable for Artificial Recharge	able for Artificial Irge	Area Suitable for Development	Development	Area Suitable for Conservation	nservation
			Sq. Km.	%	Sq. Km.	%	Sq. Km.	%
1	Alluvium	945754	309499	76.6	679551	21.90	49715	1.60
2	Laterite	40926	7807	0.25	36841	1.19	9028	0.29
3	Basalt	512302	105088	3.39	383854	12.37	95407	3.07
4	Sandstone	260416	56641	1.83	137179	4.42	90618	2.92
5	Shale	225397	35015	1.13	82842	2.67	107138	3.45
9	Limestone	62899	11531	0.37	35903	1.16	3987	0.13
7	Granite	100992	7255	0.23	30377	0.98	50346	1.62
8	Schist	140935	14067	0.45	75377	2.43	44160	1.42
6	Quartzite	46904	10423	0.34	22603	0.73	15862	0.51
10	Charnockite	76360	21221	0.68	39741	1.28	36884	1.19
11	Khondalite	32914	5948	0.19	19413	0.63	17029	0.55
12	BGC	478383	82713	2.67	321753	10.37	112705	3.63
13	Gneiss	158753	36253	1.17	89355	2.88	49971	1.61
14	Intrusives	19896	1479	0.05	9005	0.29	12607	0.41
	Total	3102829	704940	22.72	1963791	63.29	695457	22.41

Area in sq km (area of Unclassified not included), % of total area

Table 36: Ground Water Management Plan-a Summary

SI. No.	Aquifer	Total Area (Sq. Km.)	Priority Area Suitable for Artificial Recharge	able for Artificial Irge	Area Suitable for Development	Development	Area Suitable for Conservation	nservation
			Sq. Km.	%	Sq. Km.	%	Sq. Km.	%
1	Alluvium	945754	309499	76.6	679551	21.90	49715	1.60
2	Laterite	40926	7807	0.25	36841	1.19	9028	0.29
3	Basalt	512302	105088	3.39	383854	12.37	95407	3.07
4	Sandstone	260416	56641	1.83	137179	4.42	90618	2.92
5	Shale	225397	35015	1.13	82842	2.67	107138	3.45
9	Limestone	62899	11531	0.37	35903	1.16	3987	0.13
7	Granite	100992	7255	0.23	30377	0.98	50346	1.62
8	Schist	140935	14067	0.45	75377	2.43	44160	1.42
6	Quartzite	46904	10423	0.34	22603	0.73	15862	0.51
10	Charnockite	76360	21221	0.68	39741	1.28	36884	1.19
11	Khondalite	32914	5948	0.19	19413	0.63	17029	0.55
12	BGC	478383	82713	2.67	321753	10.37	112705	3.63
13	Gneiss	158753	36253	1.17	89355	2.88	49971	1.61
14	Intrusives	19896	1479	0.05	9005	0.29	12607	0.41
	Total	3102829	704940	22.72	1963791	63.29	695457	22.41

Area in sq km (area of Unclassified not included), % of total area

Table 35: Area Suitable for Ground Water Development

State Name	Alluvium	Laterite	Basalt	Sandstone	Shale	Limestone	Granite	Schist	Quartzite	Charnockite	Khondalite	BGC	Gneiss	Intrusives	Total
Andbra Dradoch	19337	1610	7398	18678	155.85	0,37,0	11155	13765	9208	17.147	25.5.5	93773	8478	ωį	323676
Arunachal Pradesh	4490			5	2			5	3		3		}		4500
Assam	57070			5576	4348				193			1681			89889
Bihar	81803	8	স্ক	2503	m	82	518	254	752	m		4214	839	18	90548
Chandigarh	115														115
Chhattisgarh	130	1391	557	23405	14052	15.255	3778	1514	539	1157	12	29645	18810	3678	113922
Dadra and Nagar Haveli			349												349
Daman and Diu			53												53
Delhi	452								1						453
Goa	42	1332	34	267			18	609				323		232	2856
Gujarat	14849		<i>0</i> 969£	1102	169	674	1209	7274	750				1092	28	90169
Haryana	16234			587					105				4		16930
Himachal Pradesh	54371			28	2										54401
Jammu and Kashmir	23841			1											23842
Jharkhand	5497	576	3087	4096		583	1784	9333	1321	196		44984	2029	651	74167
Karnataka	638	2928	21943	809		3392		20510				61597			111611
Kerala	3143	1444					145	175	02	11640	2940	207	8717	123	28604
Madhya Pradesh	34329	2064	109990	46818	23731	4571	1595	5894	1916			25951	586	401	257846
Maharashtra	11268	4213	201585	7231	588	1917	7395	4347	925			215	15669	649	255612
Manipur	3356			7	1										3964
Meghalaya	1002				10427		300					10			11739
Mizoram	0				7										7
Nagaland	537			198	430										1165
Orissa	37706	4676		4447	2223		785	3744	2548	5140	6819	39366	83	2442	109979
Puducherry	196	œ		28						2			4		238
Punjab	10676			069											11366
Rajasthan	27426	22	2062	7576	4522	31	436	3860	894	38	31	3678	2075	207	52857
Sikkim	19							8							22
Tamil Nadu	14915	2281		6119	128	64	829	389	29	14094	1056	4524	30330	162	75010
Tripura	602			5519	3887										10008
Uttarakhand	7867			11											78.78
Uttar Pradesh	190184		559	953	2430			1453	5367			7663			208609
West Bengal	56861	14276	244	736	304	স্ক	400	2748	2			4422	99	311	80488
Total	679551	36841	383854	137179	82842	35903	30377	75377	22603	39741	19413	321753	89355	9002	1963791

Table 35: Area Suitable for Ground Water Development

State Name	Alluvium	Laterite	Basalt	Sandstone	Shale	Limestone	Granite	Schist	Quartzite	Charnockite	Khondalite	BGC	Gneiss	Intrusives	Total
Andbra Dradoch	19337	1610	7398	18678	155.85	0,37,0	11155	13765	9208	17.147	25.5.5	93773	8478	ωį	323676
Arunachal Pradesh	4490			5	2			5	3		3		}		4500
Assam	57070			5576	4348				193			1681			89889
Bihar	81803	8	স্ক	2503	m	82	518	254	752	m		4214	839	18	90548
Chandigarh	115														115
Chhattisgarh	130	1391	557	23405	14052	15.255	3778	1514	539	1157	12	29645	18810	3678	113922
Dadra and Nagar Haveli			349												349
Daman and Diu			53												53
Delhi	452								1						453
Goa	42	1332	34	267			18	609				323		232	2856
Gujarat	14849		<i>0</i> 969£	1102	169	674	1209	7274	750				1092	28	90169
Haryana	16234			587					105				4		16930
Himachal Pradesh	54371			28	2										54401
Jammu and Kashmir	23841			1											23842
Jharkhand	5497	576	3087	4096		583	1784	9333	1321	196		44984	2029	651	74167
Karnataka	638	2928	21943	809		3392		20510				61597			111611
Kerala	3143	1444					145	175	02	11640	2940	207	8717	123	28604
Madhya Pradesh	34329	2064	109990	46818	23731	4571	1595	5894	1916			25951	586	401	257846
Maharashtra	11268	4213	201585	7231	588	1917	7395	4347	925			215	15669	649	255612
Manipur	3356			7	1										3964
Meghalaya	1002				10427		300					10			11739
Mizoram	0				7										7
Nagaland	537			198	430										1165
Orissa	37706	4676		4447	2223		785	3744	2548	5140	6819	39366	83	2442	109979
Puducherry	196	œ		28						2			4		238
Punjab	10676			069											11366
Rajasthan	27426	22	2062	7576	4522	31	436	3860	894	38	31	3678	2075	207	52857
Sikkim	19							8							22
Tamil Nadu	14915	2281		6119	128	64	829	389	29	14094	1056	4524	30330	162	75010
Tripura	602			5519	3887										10008
Uttarakhand	7867			11											78.78
Uttar Pradesh	190184		559	953	2430			1453	5367			7663			208609
West Bengal	56861	14276	244	736	304	স্ক	400	2748	2			4422	99	311	80488
Total	679551	36841	383854	137179	82842	35903	30377	75377	22603	39741	19413	321753	89355	9002	1963791

Table 34 : Area Delineated for Water Conservation and Harvesting

			4	1	1-10			411.0			100 mm 100 mm	000			1
State Name	Alluvium	Laterne	TES EST	sandstone	Shale	Limestone	urannte	Schist	Quarzne	Charnockite	Knondalite	BGC	uneiss	INTRUSIVES	lotal
Andhra Pradesh	7	1	2491	9609	3321	952	1678	59	1853	3830	3275	5234	3060		31854
Arunachal Pradesh	3308		1397	25	34985	173	8672	2023	0				1880		52462
Assam	10534			4471	3385		0	0	693			6951			26033
Bihar	614		2	408	8	6	198	12	2			727	261	4	2240
Chandigarh	1			0											1
Chhattisgarh	0	1413	069	13966	1843	240	2099	1128	441	916	6	20035	11224	3513	57516
Dadra and Nagar Haveli			240												240
Daman and Diu															0
Delhi															0
Goa		239	0				0	278				0		167	685
Gujarat	1866	9	10605	601	874	415	1336	1729	464			0	248		18143
Haryana	245			343	0			0	134						722
Himachal Pradesh	215			2545	499	307	2456	5940	2844			2390	1882	24	19102
Jammu and Kashmir	2955		846	5672	4268	2	21602	7031				2249	2223	2971	49821
Jharkhand	84	440	993	919		42	631	2680	161	24		9130	661	138	15903
Karnataka	160	1613	1864	22		198	0	9759		0		20628			34245
Kerab	4	37					158	357		7472	2499	1380	5237	88	17232
Madhya Pradesh	2195	933	30677	27359	6398	944	373	3048	1176			11146	297	163	84710
Maharashtra	459	1620	43292	3603	13	485	5172	2978	405			73	6722	695	62389
Manipur	2042			4628	9571									201	16441
Meghakya	678			0	8816		834					7201	167		17695
Mizoram	0			2551	15675										18225
Nagaland	245			3464	9382									543	13635
Orissa	9030	1112		2244	1251		745	2041	3037	10943	10504	21513	40	3558	63019
Pondicherry	2			3											5
Punjab	720			550											1270
Rajasthan	12124	55	1927	6765	2064	165	3546	1301	2841		2	1588	5879	224	38482
Sikkim	19			29	130	4	36	1591	74			0	3419		5340
Tamil Nadu	312	177		795	2	7	149	13	1	13699	740	829	6600	177	23501
Tripura	119			2882	3709										6711
Uttarakhand	571			176	166	42	648	602	586			88	171	254	3248
Uttar Pradesh	455		383	277	781			955	1149			384			4384
West Bengal	3750	1382	1	187	m		16	634				1214		15	7202
Total	49715	8206	95407	90618	107138	3987	50346	44160	15862	36884	17029	112705	49971	12607	695457

Table 34 : Area Delineated for Water Conservation and Harvesting

			4	1	1-10			411.0			100 mm 100 mm	000			1
State Name	Alluvium	Laterne	TES EST	sandstone	Shale	Limestone	urannte	Schist	Quarzne	Charnockite	Knondalite	BGC	uneiss	INTRUSIVES	lotal
Andhra Pradesh	7	1	2491	9609	3321	952	1678	59	1853	3830	3275	5234	3060		31854
Arunachal Pradesh	3308		1397	25	34985	173	8672	2023	0				1880		52462
Assam	10534			4471	3385		0	0	693			6951			26033
Bihar	614		2	408	8	6	198	12	2			727	261	4	2240
Chandigarh	1			0											1
Chhattisgarh	0	1413	069	13966	1843	240	2099	1128	441	916	6	20035	11224	3513	57516
Dadra and Nagar Haveli			240												240
Daman and Diu															0
Delhi															0
Goa		239	0				0	278				0		167	685
Gujarat	1866	9	10605	601	874	415	1336	1729	464			0	248		18143
Haryana	245			343	0			0	134						722
Himachal Pradesh	215			2545	499	307	2456	5940	2844			2390	1882	24	19102
Jammu and Kashmir	2955		846	5672	4268	2	21602	7031				2249	2223	2971	49821
Jharkhand	84	440	993	919		42	631	2680	161	24		9130	661	138	15903
Karnataka	160	1613	1864	22		198	0	9759		0		20628			34245
Kerab	4	37					158	357		7472	2499	1380	5237	88	17232
Madhya Pradesh	2195	933	30677	27359	6398	944	373	3048	1176			11146	297	163	84710
Maharashtra	459	1620	43292	3603	13	485	5172	2978	405			73	6722	695	62389
Manipur	2042			4628	9571									201	16441
Meghakya	678			0	8816		834					7201	167		17695
Mizoram	0			2551	15675										18225
Nagaland	245			3464	9382									543	13635
Orissa	9030	1112		2244	1251		745	2041	3037	10943	10504	21513	40	3558	63019
Pondicherry	2			3											5
Punjab	720			550											1270
Rajasthan	12124	55	1927	6765	2064	165	3546	1301	2841		2	1588	5879	224	38482
Sikkim	19			29	130	4	36	1591	74			0	3419		5340
Tamil Nadu	312	177		795	2	7	149	13	1	13699	740	829	6600	177	23501
Tripura	119			2882	3709										6711
Uttarakhand	571			176	166	42	648	602	586			88	171	254	3248
Uttar Pradesh	455		383	277	781			955	1149			384			4384
West Bengal	3750	1382	1	187	m		16	634				1214		15	7202
Total	49715	8206	95407	90618	107138	3987	50346	44160	15862	36884	17029	112705	49971	12607	695457

Table 33: State wise Area Prioritized for Artificial Recharge

Table 33: State wise Area Prioritized for Artificial Recharge

Table 32 : State wise and Aquifer wise Annual Replenishable Recharge (m/yr)

State Name Nim Andhra Pradesh 0.00 Arunachal 0.00 Assam 0.26 Bihar 0.10 Chhattishgarh 0.10 Gelhi 0.07 Goa 0.08	00 0.45 00 0.85 26 0.66	0.03	*	Min	X	Min May		Min	Mas	Min Ma	Max Min	m Wax	N/S	n Max	2	m Max			-	Air May	N. disc	- KAND	i d	Max	2	Mn Mac
Pradesh hgarh	0.45 0.85 0.66						Ě	=			=								à			- Add with	100	Max	5	Solly
Pradesh Barth	0.45		+															Max			MIN	Max	Min			YEA.
ng up	0.85		0,44	20.0	0.62 0	0000	0.49 0.0	0,00	0,38 0,	0,00	0.55 0.04	y 0.29	0,00	0.44	0,00	0 0.55	00'0	0,81	00'0	0,62	000	0.75	0,02	0.41	0,12	0.13
hgarth 1	0.66			0,00	0.67 0	0.25 0.	0,68 0,0	0000	0.52 0.	0.03 0.8	0.39 0.00	0,13	3 0.00	0.51	0.25	5 0,45	1						0.00	0.51		
hga th					a	0,26 0,	0.58 0.2	0,26 0,	0.65	i	0.27	77 0,52	52 0.42	2 0.58	12.0 8	7 0,58	1,2%		1	4	0,27	0,66		Щ		
hgarh hgarh	0.72	0.25	0.28	0.28	0.28 0	0.10 0,	0.45 0.7	0.15 0.	0.31 0.	0.10 0.3	0.37 0.11	0.32	2 0,12	2 0.31	31 0.10	0 0.32	0,12	0.12			0.09	0.94 194	0,10	©.35	60'0	0.34
	0.16	90'0	16'0	0.08	0,22 0	0.07 0.	22	0,06 0.	22	0,06 0,64	64 0,06	Ó	91 0.08	0.57	90'0 29	6 0,03	90'0	0,16	0,11	0,17	90'0	0.55	0,06	0.55	0,06	28.0
Ì	0.43														0.07	7 0.28										
	0.22	90'0	0.22	0.06	0.22 0	0.07 0	Ö.13				0.11	11 0.11	1 0.06	0,20	20 0.20	0.20		H	1	H	0.06	0.22	Н		0.06	0.11
	0.25	0,10	0,19	00.00	0.50	0.00	0.42 0.0	0,00	0,26 0,	0,00	0.83 0.07	Ŏ	23 0,01	M 0,22	22 0,07	7 0,22					0,10	0,13	0.00	0.22	0,09	0.18
Haryana 0,10	0.62				a	0,16 0,	0.37 0.3	0.31 0.	0.37		- 1		0.21	1 0.35	5 0.14	4 0.49							0.26	0.26		14
Jammu & 0,00	0.68		1	000	0.43 0	0,00	0,68 0,0	0,00	0.68	0.04 O.2	0,17 0,00	χ 0,68	88 0.04	M 0.61	夏		I				00'0	0,68	0,00	0,61	0,00	0,68
Jharkhand 0.05	0,40	90'0	0,22	0,06	0.34	0.05	ਲ	0.08	0.13 0.	0.06 0.3	0.28 0.07	Ö	22 0.05	5 0,40	90'0 01	6 0.28	0.10	0.17	E.		0.05	0.40	0.05	0.22	90'0	0.15
Karnataka 0.07	0.21	0,03	0,26	0.03	0.45 0	0.04 0.	28	0'06 0'	0,16 0,	0,03 0,1	0,16 0,05	Ŏ	25 0.03	3 0.45	2		90'0	0,13			0,03	0,45	0.05	0,18	90'0	0,10
Kerala 0,15	0.50	0.15	0.50		O	Ö,23 O.	0.23				0.19	19 0.33	33 0.18	8 0.26	25 0.22	2 0.26	0,10	0.58	0,12	0.43	0,18	0.48	0.10	0.58	0.20	0.22
Madhya Pradesh 0,04	0.62	0.05	0,26	90'0	0.45 0	0,04 0.	0.37 0.0	0,04	0,34 0,	0.05 0.3	0,29 0,05	Q	15 0.05	6 0,29	29 0,05	5 0,29					0,03	0,26	0,06	0,28	0,05	0,17
Maharashtra 0.01	0.30	0.01	0,17	0.01	0,44 0	0.07 0.1	0.91 0.0	0,07 0,	0,18 0,	0,07 0.3	0.17 0.07	16.0 50	10.07	16'0 2	10,07	2 0,19	0.09	0,12			0.07	0,16	0.08	0,91	0,07	0.16
Manipur 0,18	0.19	Ħ			a	0,18 0.	0.18 0.3	0.18 0.	0,19																0.18	0,18
Meghalaya 0.22	68.0				a	0,60 0,1	0.60 0.3	0,22 0,	0,83		0.36	Ó	03	1	0,22	2 0,60			1	4	0.22	0,83				
Mizoram 0.33	0,36	=			a	0,24 0,4	0.48 0.2	0.24 0,	0,48																	
Nagaland 0.11	0.19		F		0	0,11 0.	0.19 0.3	0.11 0.	0,19		F												0,11	0,16	0.11	0,16
Orissa 0.00	0,57	0,05	0,49		٥	0.08 0.0	0.30	0,07 0,	0,45		90'0	0.45	90'0 5	6 0.31	31 0.08	8 0.45	0.05	0,31	0.05	0,31	0.05	0,45	0,06	0,21	90'0	0.45
Punjab 0.08	68'0	H			o	0.08 0.5	65,0				0.17	71 0.17	7													
Rajasthan 0.00	0.60	0.05	80.0	0.02	0,19 0	0,01 0.3	0.32 0.0	0,01 0,	0,19 0,	0,01 0.3	0,19 0,01	31 0,20	0.01	T 0.17	10.0	1 0.32	0.03	0,0	0.03	9 0.04	0.01	0.20	00'0	0.20	0,01	0.20
Sikkim 0.01	0.18				a	0,04 0.	0.18 0.0	0,01	0,01 0,	0,04 0,2	0,18 0,01	21 0.04	10'0 pt	u 0.18	10,0 8.	1 0,18		4			0,02	0,04	0,01	0,18		
Tamil Nadu 0.00	0.57	0.13	0.21		0	Ö.04 O.1	0.68 0.3	0,12 0,	0.52 0.	0.14 0.5	0.51 0.06	0.48	8 0.03	13 0.27	27 0.18	S 0,30	0.03	0.08	0,07	0,42	0.03	0.55	00'0	0.68	90'0	0.48
Tripura 0.41	0,51			Ħ	a	0,41 0,9	0,51 0,4	0,41 0,	0,51																	
Uttar Pradesh 0.01	0.95	i		0.13	0,13 0	0,01	0,64 0,01		0,41 0.	0.02 0.0	20'0		0.02	2 0.13	10'0 8'	1 0.64					0.01	0,18	0.01	0.02	0,02	20'0
Uttarakhand 0.00	0.88				۵	0,00	0.62 0.0	0,00	0,57 0,	0,00 0,40	40 0,00	x 0.57	0,00 7	0.57	0.00 76	0,43					00'0	0,41	0,00	0.57	0,00	000
West Bengal 0.00	0.89	00.00	0.77	0.08	0.52 0	0,00	0,71 0,0	0,00	0.41 Q.	0,00	0.71 0.00	20 02	2 0.00	0.71	71 0.11	1 0.11					00'0	0.63	00:00	0,18	90'0	0.33

Table 31: State wise Distribution and Characteristics of Intrusives

	Major Aquiters (Area in sq km)	Major Aquifers (Area in sq km)					Aquifer Properties	erties				
STATE NAME	Basic - Dolerite/ Anorthosite	Ultrabasic Epidiorite/ Granophyre	Aquifer System	Type of Aquifer	Thickness of Weathered Zone	Fractures	DTW (Dec.Avg)	Transmissivity	Yield	Specific yield	Quality (ECin Micromhos/cm)	Remarks
	INGT	INOZ			m	m bgl	nbgl	m ²⁷ day	m³/day	%		
Andhra Pradesh		108										
Chhattishgarh	4362				13	1217	5-10		0.02	Upto 2	500-750	Act as barrier for GW movement.
609	402	A	}				7			Į	200	•
Gujarat	51		Single				10-20				1000-2000	
Himachal Pradesh	19		Single						10		500-1000	Not productive. Developed through springs.
Jammu & Kashmir	19	4926									500-750	Act as barrier for GW movement.
Jharkhand	475	180					5-10			Upto 2	500-1000	Ī
Karnataka											1000-2000	
Kerala	129	88										Very small area
Madhya Pradesh	401		Single	Unconfined, Semi-confined Confined			5-10			Upto 2	500-750	
Maharashtra	649						5-10					Act as barrier for GW movement.
Manipur	1	303								Y	> 500	
Nagaland		632									> 500	
Orissa	2922	1948	Single	Unconfined, Semi-confined	6-8	100-150	5-10	0.71 - 81	86-258	Upto 2	500-1000	1
Rajasthan	463	263		Unconfined			5-10			Upto 1,5	2000-4500	
Tamil Nadu	216	236	Single								2000-2500	Act as GW Barrier
Uttarakhand	735										500-1000	
West Bengal	275	36					-				500-1000	
Total Area	11167	0.730					The state of the s	The second secon				

DTW: Depth to water level

т bgl: Meterbelowground level

(6TRESPESS Statistian

Greenings (Case)

Li Otreis

Table 30: State wise Distribution and Characteristics of Laterite Aquifer System

	Major Aquifers (Area in sq km)					Aquifer Properties	erties			
STATE NAME	Laterite/ Ferruginous Concretions	Aquifer	Type of	Thickness	DTW (Decadal Avg)	Zones Encountered	Transmissivity	Yield	Specific Yield	Quality
	LTOT	System	Aquiler	H	m bg(mbgl	λep/ ₂ m	m²/day	%	(ECin Micromhos/cm)
Andhra Pradesh	1761	Single	Unconfined	5.25	10-20	10-15	300: 1500	180 - 864	Upto 3	2009
Chhattishgarh	1912	Single	Uncanfined	2-30	5-10	2.7	2-30	1728- 6048	Upto 2,5	500-1000
Goa	1573	Single	Uncanfined	5-15	5-10	2-7	4 - 1440	50-150	Upta3	500-750
Jharkhand	743	Single	Unconfined	5-40	10-20	8-15		10	Úpto 3	500-1000
Karnataka	3628	Single	Unconfined	5 - 15	5-10	2-8	4 - 1400	50-150	Upto 2	2002-2000
Kerala	1454	Single	Unconfined	2:30	5-10	27		5-6	Upto 9	500-750
Madhya Pradesh	2141	Single	Unconfined	10-15	5-10	5-15	3-275	70-210	Upto 2.5	500-1000
Maharashtra	5516	Single	Unconfined	2-30	10-20	8.20	63-136	13-56	Upto 3	> 500
Orissa	5305	Single	Unconfined	12-20	5-10	7-15	2-20	105 - 14Ö	Upta 3	500-1000
Rajasthan	115	Single				N	Not Explored			
Tami) Nadu	2417	Single	Unconfined	10-30	5-10	10-25		15 - 150	Upta 2.5	2000-3000
West Bengal	14280	Single	Unconfined	8.20	5-10	8.15		20-60	Upto 3	500-1000
Total Area	40926									

DTW: Depth to water level m bgl: Meter below ground level

LATERITE AQUIFER SYSTEM - STATISTICS
Gross Area: 40925.68 sq.lsm
Percentage: 1.29 %

Latente Others

Table 29: State wise Distribution and Characteristics of Khondalite Aquifer System

	Major Aquifers (Area in sq.km)					Aquifer Properties				
STATE NAME	Khondalite/ Granulite	Aquifer System	Type of	Thickness of Weathered Zone	Fractures	DTW (Decadal Avg)	Transmissivity	Yield	Specific	Quality
	КНОТ		Aquiter	E	mbgl	mbgl	m²/day	m²/day	*	(ECin Micromhas/cm)
Andhra Pradesh	12091	Single	Unconfined to semi- confined	5-20	99	5-10	10-120	20.180	upto 3	200-3000
Chhattísgarh	12	Single	unconfined				Hilly area, Not explored			
Kerala	4223	Single	Semi-confined	5-15	4-40	5-10	15-80	50-150	Upto 3	500-1000
Orissa	14351	Single	Unconfined Semi-confined	15 - 20	100 - 150	5-10		172-432	Upto 3	500-1000
Rajasthan	105	÷	i				Hilly area, Not explored			
Tamil Nadu	2009	Single	Unconfined Semi-confined	5-20	15 - 291	5-10	200 - 476	100-1500	Upto 2	1000-4000
Total Area	32914									

DTW: Depth to water level m bgl: Meter below ground level

Gross Area: 32913.94 sq.km

Percentage: 1.04 %

99%

Table 28: State wise Distribution and Characteristics of Charnockite Aquifer System

	Major Aquifers (Area in sq km)				Aquife	Aquifer Properties				
STATE NAME	Charnockite	Aquifer System	Type of Aquifer	Thickness of Weathered Zone	Fractures	DTW (Decadal Avg)	Transmissivity	Yield	Specific	Quality (EC in Mi-
	CK01			8	lgd m	lgdm	m²/day	m³/day	*	
Andhra Pradesh	11302	Single	Unconfined Semi-confined	8-15	15-60	2.5	2-60	50-180	Upto4	200-3000
Chhattisgarh	1212	Single	Unconfined	10.25	83-430	5:10	20-135	0.5 - 250	Upto 2	500-1000
Jharkhand	196	Single	Unconfined Semi-confined	15-20	100-140	5-10	40-186	12-360	- (500-1000
Kerala	16071	Single	Unconfined Semi-confined	5-20	60-175	5-10	28-112	70 - 3024	Upta 2	500-1000
Orissa	13784	Single	Unconfined Semi-confined	15 - 20	100-150	5-10	24-90	86-258	Upto5	500-1000
Rajasthan	211	Single	Unconfined Semi-confined	10.45	60-140	20-40	<u>ጽ</u> -ኛ	3.	Y	2000-2500
Tamíl Nadu	33580	Single	Unconfined, Semi-confined Confined	5-18	15-291	5-10	200 - 476	80.2500	Upto 2	200-3000
Total Area	76360									

DTW:Depth to water level m bgl: Meter below ground level

CHARNOCKITE AQUIFER SYSTEM - Statistics

Gross Area : 76359.75 sq.km

Fercentage : 2.4 %

98%

Table 27: State wise Distribution and Characteristics of Quartzite Aquifer System

	Major Aquirer	Major Aquirers (Area in sq km)					Aquiter Properties	emes			
STATE NAME	Quarizite	Description	Aquifer	Type of Aquifer	Thickness of Weathered Zone	Fractures	DTW (Decadal Avg)	Transmissielty	Yield	Specific	Quality (ECin Micromhos/cm)
	1,020	1401			m.	n bgl	m bgl	m²/day	m³/day	%	
Andhra Pradesh	11305	49	Single	Unconfined Semi-confined	8-15	15-60	10-20	10:50	10-240	1-25	1000-3000
Assam	93	706					Not Explored	p.			
Bihar	Ť.	757	Single	Unconfined Semi-confined	10-15	50-150	5-10	20-80	10-300	1-2.5	500-1000
Chhattisgarh	505	42	Single	Unconfined Semi-confined	20-20	20-70	10-20	20-100	10-200	1-25	500-750
Delhi	137	7-	Single	Unconfined Semi-confined	10-20	16-125	20-40	3125	55 - 265	1-2.5	1000-3000
Gujarat	· y	77.6	Single	Unconfined Semi-confined	5-15	3 -75	5-20	5-140	20-400	1-2.5	2000-4500
Нагуапа	342	X	Single	Unconfined Semi-confined	10-20	14-70	20-40	27.2	2.76	1-2.5	1000-3000
Himachal Pradesh	409	4228	Single	Unconfined Semi-confined	8-15	20-70	5-10	5-40	10-260	1-2.5	500-1000
Jharkhan d		1488	Single	Unconfined Semi-confined	15-20	30.70	5-10	3-123	10-240	1-2.5	500-1000
Madhya Pradesh	1062	954	Single	Unconfined Semi-confined	12.25	30.70	10-20	16119	40-300	1-25	1000-2000
Maharashtra	293	874	Single	Unconfined Semi-confined	15-25	40.75	5-10	3.27	10-250	1-25	> 500
Orissa	828	3223	Single	Unconfined Semi-confined	12-25	35-50	5-10	12-211	20-300	1-25	500-1000
Rajasthan		6456	Single	Unconfined Semi-confined	12:30	40-150	10-20	4-114	50-400	1-2.5	1500-2500
Uttarakhand	561	7033	Single	Unconfined Semi-confined	15-20	35-50	20-40	10-50	40-300	1-25	
Uttar Pradesh	5378		Single	Unconfined Semi-confined	15-25	40-100	10-20	10-50	88-288	1-2.5	500-1000
Total Area	20830	26074									

DTW: Depth to water level

m bgl: Meter below ground level

Table 17 a : Aquifer wise Area under Over Exploited (OE) Blocks

State Name	Alluvium	Laterite	Basalt	Sandstone	Shale	Limestone	Granite	Schist	Quartzite	Charnockite	Khondalite	BGC	Gneiss	Intrusives	Total
Andhra Pradesh	218	150	198	480	4365	577	1505	77	1675		258	11943	ı	1	21455
Delhi	998								136						1002
Gujarat	15828		1059	1469	860	376	57						16		19664
Haryana	25262								201						25463
Jharkhand	229			124			7	344	17			200	.56	3	1273
Karnataka	2	215	125	118		2464		5323				46717			67475
Kerala													266		266
Madhya Pradesh	480	33	18176	320	367	o									19365
Maharashtra	2828		5001	2					41						7831
Punjab	37770			46											37816
Rajasthan	123621	74	7433	20202	11748	904	12157	3257	2367	173	74	17658	15712	470	210149
Tamil Nadu	5929	136		2247	123		503	7		13138	617	2207	18939	298	44174
Uttar Pradesh	20115			157					11			1356			21639
Grand Total	233240	809	44441	25464	17453	4321	14224	6006	7407	13311	948	080380	34990	776	486573

Table 17 b : Aquifer wise Area under Critical Blocks

State Name	Alluvium	Laterite	Basalt	Sandstone	Shale	Limestone	Granite	Schist	Quartzite	Charnockite	Khondalite	BGC	Gneiss	Intrusives	Total
Andhra Pradesh	7	444	497	281			237	76				4414	28		5984
Delhi	392														392
Gujarat	4765	9	730	1861	1635	44	119	88	41				17		2086
Haryana	7297			н					37				ব		7339
Jharkhand			i	18				2		42		438			501
Karnataka	74	28	2721			42		922				9366	ō		13152
Kerala	45	7								9			468		527
Madhya Pradesh	454	9	1127	349	1180	989		6					15		3776
Punjab	995														566
Rajasthan	11389			1210	714		139	2	88			13	986	41	14580
Tamil Nadu	1041			349			84	112		3724	132	627	4330	13	10422
Uttar Pradesh	7801				10				141			620			8572
Grand Total	34414	492	5135	4068	3538	122	589	1211	304	3773	132	15480	5847	75	76201

Categorization Based on Dynamic Ground Water Resources of India, 2009 Area in Sq Km

Table 25: State wise Distribution and Characteristics of Granite Aquifer System

	Major Aquifers	Major Aquifers (Area in sq km)				d .	Aquifer Properties				
STATE NAME	Effusives Acidic Rocks	Intrusive Acidic Rocks	Aquifer	Type of Aguifer	Thickness of Weathered Zone	Fractured Zones Encountered	DTW (Decadal Avg)	Transmissivity	Yield	Specific Yield	Quality (ECin Micromhos/cm)
	GR01	GR02	эхэс		8	mbgl	mbgl	m²/day	m³/day	*	
Andhra Pradesh		13597	Single	Unconfined, Semi-Confined	10-15	15-60	10-20	2.3-12.6	10-200	Upto 2	1500-2500
Arunachal Pradesh		8672				Not Explored					500-750
Bihar		518	Single	Unconfined, Semi-Confined	10-20	20-60	5-10	4-50	10-220	Upto 2	500-1000
Chhattisgarh		4140	Single	Unconfined, Semi-confined	40	20-60	5-10	5-45	70-350	Upto 2	500-750
Gujarat	115	2386	Single	Semi Unconfined	10-32	30-40	20-40	5-40	1-100	Upto 2	1500-2000
Himachal Pradesh		2719	Single	Semi Uncanfined	5-18	20-60	5-10	5-45	20-200	Upto 2	500-1000
Jammu & Kashmir		39111				Not Explored	-				> 500
Jharkhand		1786	Single	Unconfined	10-40	20-60	5-10	5-50	10-700	Upto 3	200
Kerala		188	Single			Not Explored	70			Upto 2	
Madhya Pradesh		1615	Single	Semi Unconfined	10-20	20-60	5-10	4-50	10-200	Upto 2	500-1000
Maharashtra		7618	Single			Not Explored	n			Upto 3	500-1000
Meghalaya		1018	Single	Unconfined, Semi-confined	38	20-55	5-10	Up to 24	406	Upto 3	500-750
Orissa		1259	Single	Unconfined, Semi-Canfined	12-15	100-150		0.32-115	172-430	Upto 2	500-1000
Rajasthan	18	13190	Single	Unconfined, Semi-Confined	10-30	30-40	20-40	5-40	1-100	Upto 3	1500-2500
Tamil Nadu		1399	Single	Unconfined, Semiconfined to confined	5-25	40-200		20-500	288 - 1440	Upto 2	1000-2500
Uttarakhand		1188	Single	Unconfined, Semiconfined to confined	5-18	20-60	5-10	5-45	15-200		500-750
West Bengal		400	Single								500-1000
Total Area	133	100858									

DTW / Depth to water level m bgl: Meter below ground level

GRANITE AQUIFER SYSTEM-Statistics
Grass Area : 100991.81 sq.km
Percentage : 3.18%
Others

Table 24: State wise Distribution and Characteristics of Limestone Aquifer System

		Major	Major Aquifers (Area in sq km)	sq km)						Aquifer Properties	ties			
STATE NAME	Millofide	Limestone/ D olomite	Limestone/ Dolomite	Limestone with Shale	Marble	Aquifer	Type of Aquifer	Thickness	Zones	DTW (Decadal (Avg)	Transmissivity	Yield	Specific	Quality (ECin Micromhos/cm)
	1511	1502	1803	1504	1505			m	mbgl	m bg!	m²/day	m³/day	%	
Andhra Pradesh		146	8613	1721		Single	Unconfined, Confined	8 to 200	115-190	10-20	1,2.24	20-2100	Upto 3	1500-2500
Arunachal Pradesh		130	168						Not Explored	rred				500-750
Chhattisgarh			13122	2133	Т	Single	Unconfined Semi can- fined	30.450	25-150	5-10	20-450	91728	Upto 3	500-1000
Gujarat	2943	1836			175	Multiple	Unconfined	55-250	20-100	10-20	20-250	200	Upto 3	1000-3000
Himachal Pradesh		5510	713	184	1	Single	Unconfined to Can- fined	40-150	50-140	5-15	10-180	4-965	Upto 3	500-1000
Jammu & Kashmir		10399							Not Explored	red				
Jharkhand			503		88	Single	Unconfined, Semi Confined fined to Confined	50-200	50-75	5-10	20-300	12-432	Upto 2	> 500
Karnataka			5872			Single	Unconfined, Semi Confined fined to Confined	40-150	40-120	10-20	20-180	20-300	Upto 2	2000-5000
Madhya Pradesh		201	4512		88	Single	Unconfined, Semi Confined	50-450	25-150	10-20	63-136	140-350	Upto 3	500-1000
Maharashtra			187	1376	326	Single	Unconfined, Semi Con- fined	50-450	25-175	10-20	20-200	13-240	Upto 2.5	1000-1500
Rajasthan	m	'n	810		7.1.2	Single	Unconfined, Semi Can- fined	50-451	30-160	> 40	30-180	20-200	Upto 2	2500-3000
Uttarakhand		1457	122						Not Explored	red				500-750

DTW : Depth to water level m bgl: Meter below ground level

LIME STONE AQUIFER SYSTEM -STATISTICS

simiss area : 6211981.9 Lsq.Rm. Tencentage : 1.98%

153 153 153 153 153 153 153

Table 23: State wise Distribution and Characteristics of Shale Aquifer System

			Major Aquifers (Area in sq km)	(Area in sq	km]					¥	Aquifer Properties				
STATE NAME	Shale with Limestone	Shale with Sandstone	Shale, Limestone and Sandstone	Shale	Shale/Shale with Sandstone	Shale with Limestone	Aquifer	Aquifer	Aquifer Thickness	DTW (Decadal Avg)	Fractures	Transmissivity	Yield	Specific	Quality (ECin
	SHOT	SH02	SH03	SH04	SHOS	SH06.	and a	ıype	ш	lgdm	lgqu	m²/day	m³/day	%	Microninos/cmj
Andhra Pradesh	x	93	626	59	21453	i,	Single	Semi Confined to Con- fined	Upto 100m	5-10	24-60	upto 740	60-160	Up to 3	1500-3000
Arunachal Pradesh	3.	23801	11761	0		1.	Single		Upto 100m		-1	,	3	-1	500-1000
Assam	i	3076	1481	í.		-1	Single	Unconfined and Semi- confined to confined	Upto 150m	5-10	23-90	10-172	8to84	-1	500-750
Chhattisgarh	8	1	199	Ţ	5170	1116	Single	Unconfined and Semi- confined to confined	Upto 100m	5-10	20-70	20-600	70-1200	Uptol	500-1000
Gujarat	.0	1124	1029	3479		(a)	Single	Unconfined and Semi- confined to confined	Upto 150m	10-20	25-30	20-550	80-600	Upto 1,5	200-6000
Himachal Pradesh	147	308	[+]=	1501	878	4	Single	Unconfined to Semi confined	40.250	5-10	50-150	20-120	80-400	Upto 2	500-1000
Jammu & Kashmir	2727	5200	22032	1	157	r				Not Explored	red			Ī	500-750
Madhya Pradesh	1-30	31	1959	872	22477	331	Single	Unconfined and Semi- confined to confined	Upto50m	10-20	20-40	20-600	10-20	Upto 1.5	500-1500
Maharashtra), ii	471	•	-		LII	Single	Unconfined	UptoSOm	5-10	15-40	20-600	10-240	Upto 2	200-2000
Manipur		11952								Not Explored		e e		Upto 2	500-750
Meghalaya	ı	7834	4536	ľ		-				Not Explored				Upta 2.5	> 500
Mizoram	α	17150	-1	1	7	- 1				Not Explored	_			Upto 2.5	500-750
Nagaland		10722								Not Explored				Upto 2	500-650
Orissa	Ŷ	1	x	26	1745	1152	v	Unconfined to Semi confined	Upto 100m	5-10	25-60	20-300	86-129	Up to 3	500-1000
Rajasthan	170	10	1247	ď.	12127	3349	4	Unconfined to Semi confined	Upta 100m	20-40	40-80	20-350	¥	Upto 2	1000-4500
Tamil Nadu	246	· t	Ŋ	ř.	·	,		Unconfined to Semi confined	Upto 80m	5-10	25-40	20-120	80-240	Upto 2	2000-3000
Tripura	К	3835	c	Y		ì	Single	Unconfined to Semi confined	1:-		2			Upto 2.5	> 500
Uttarakhand	494	1801	504	i.	156	1309	Single	Unconfined	40-250	5-10	50-150	20-120	×	Upto 2	500-750
Uttar Pradesh	6	-1	*	Ĺ	0	2430	Single	Unconfined, Semi Confined	50-100	5-10	upto 100	40-500	288-2880	Upto 2	500-1000
Total Area	3784	87467	45539	85.05	64263	19100									

DTW : Depth to water level m bgl; Meter below ground level

Table 22: State wise Distribution and Characteristics of Sandstone Aquifer System

		M	ajor Aquifers	Major Aquifers (Area in sq km)						A	Aquifer Properties				
STATE NAME	Sandstone/ Conglomerate	Sandstone with Shale	Sandstone with coal	Sandstone with clay	Sandstone/ Conglomerate	Sandstone with Shale	Aquifer System	Aquifer	Aquifer Thickness	DTW (Decadal Avg)	Fractures	Transmissivity	Yield	Specific	Quality (ECin Micromhos/cm)
	5701	ST02	ST03	ST04	ST05	5706			w	mbgl	nbgl	m²/day	m³/day	*	
Andhra Pradesh	4540	1828	150	10851	1982	810	Multiple	Unconfined	20-150	5-10	38-100	100-1000	50-1200	Upto 3	1500-3000
Assam	ō	2765	2681	144		,	Multiple	Semi-Confined, Con- fined	20-600	2.5	3	200-700	5-100	Upto 3	500-1500
Bihar	279	13		15	2212	9	Multiple	Semi-Confined Con- fined	60-400	5-10	20120	50-250	20-200	Upto 3.5	500-1000
Chhattisgarh	Ŧ	10818	8766		7644	824	Ť	Unconfined, Semicon- fined	400	5-10	20-120	50-250	70-700	Upta 2.5	1000-1500
Goa	>	e l	X	Ý	270	,				Not Explored	red				> 500
Gujarat	5381	4075	329	365	- I	12	Multiple	Unconfined, Semicon- fined to Confined	60-400	5-20	X	50-700	60-400	Upto 8	4500-5500
Haryana	401	189	a	i	œ		Single	,	50-200	20-40	20-120	20-600	20-600	Upto 3	1000-2000
Himachal Pradesh	7439	864	· · ·	1692	19	458	Single/ Multiple	Uncanfined, Semi- confined to Confined	20-350	10.20	50.160	200-1000	20-3662	Upto 3	500-750
Jammu & Kashmir	20034	15745	8392	1859	ī		Multiple	Unconfined, Semi- confined	40-280	5-10	X	3-5	24-720	Upto 6	> 500
Markhand	106	564	3174	įΣ.	253	24	Single/ Multiple	Unconfined, Semi- confined	20-600	5-10	50-120	50.250	70-600	Upto 3	500-1000
Karnataka	Х	V	ı	X	721		Single	Unconfined	00-80	5-10	50:120	30-180	100-300	Upto 1.5	500-700
Madhya Pradesh	21	18029	×	ī	32913	1073	Single/ Multiple	Unconfined, Semicon- fined to Confined	60-400	5-20	60-120	50-200	10-350	Upto 3	500-1500
Maharashtra	1179	3658	366	, c	1430	782	Single/ Multiple	Unconfined, Semicon- fined to Confined	60-400	5-10	60-120	50-250	13.300	Upta 3	1000-1500
Manipur	X	402	4712	123	1				-	Not Explored				Upto 15	500-1500
Mizoram	×	128	3010		×	7				Not Explored	red		١		500-750
Nagaland	0+0	0	3306	1	14:	÷				Not Explored	red				500-1500
Orissa	2248	429	1209	*	866	112	Single	Unconfined, Semicon- fined to Confined	upto 375	5-10	Η	25-250	70 - 1036	Upto 6	500-750
Punjab	694	44	X	9	×		Single	X	į	10-20	X	100-1000	86-864	×	> 500
Rajasthan	3122	9117	411		7833	14757	ì		-	20-40	*	J	à		2500-4500
Tanril Nadu	3748	ū	1XII	4739	130		Single	Unconfined, Semicon- fined to Confined	20-500	5-10	10	200-6000	860-4800	(X)	1000-2000
Trípura	Ĭ	27.77	X.	1762	Ŷ	+	Single	Semi-confined to Con- fined	40-200	5-20	Ĭ	ī	*	Upto 8	500-750
Uttarakhand	512	2260	- 1	Y.	-1		Multiple	Semi-confined to Con- fined	20-350	5-10	X	20-300	80-600	Upto 3	500-2000
Uffar Pradesh	96	171	287	G.	0	266	Single	Unconfined, Semi- confined	×	10-20	٠	ū	2	Upto 8	500-1500
West Bengal	24	479	229	4		1	Y,	, x.	í	5-10	X	·	ï	Upto 3	500-1000
Total Area	50026	75355	37720	21540	56354	19430							Į		

DTW: Depth to water level

m bgl: Meter below ground level

Gross Arra (250415.61 Spkin) Purcentages (821.%)

Contract of the contract of th

Table 21: State wise Distribution and Characteristics of Gneiss Aquifer System

	Majo	Major Aquifers (Area in sq km)	in sq km)					Aquifer Properties				
STATE NAME	Gneiss	Gneiss	Mignathic Gneiss	Aquifer	Type of	Thickness of Weathered Zone	Fractures Encountered	DTW (Decadal Avg.)	Transmissivity	Yield	Specific	Quality (ECin Mi-
	GN01	GN02	GN03	System	Aquifer	m.	m bgl	mbgl	m²/day	m³/day	88	cromhas/cm)
Andhra Pradesh	1216	7708	3151	Single	Unconfined Semi-confined	8-15	20-100	5-10	12-40	80 - 240	Upto 1.5	500-750
Arunachal Pradesh	280	1599	и	Single	Unconfined Semi-confined	5-20	20-60	5-10	20-60	80-180	Upto 1,5	250-500
Bihar	839			Single	Unconfined Semi-confined	10.25	30-30	5-10	15-52	40-270	Upto-3.5	500-1000
Chhattisgarh	19679	181	v	Single	Unconfined Semi-confined	10-15	20-70	5-10	1357	25-320	Upto5	500-1000
Gujarat	142	1117		Single	Unconfined Semi-confined	5-20	30-30	5-10	1837	30-370	Upto 2	2500-4000
Himachal Pradesh	22	4041	160	Single	Unconfined Semi-confined	3.15	20-40	5-15	5-25	50-70	Upto 1.5	500-1500
Jammu & Kashmir	2361	3773	7	Single	Unconfined Semi-confined	5-10	-x)	-5		ż	4	-
Jharkhand	2095	19	×	Single	Unconfined Semi-confined	15 - 20	100-140	5-10	17-56	12-360	Upto5	500-750
Kerala	φ	11980	0	Single	Unconfined Semi-confined	5.25	30-30	5-10	14-80	75-205	Upto 2	500-1500
Madhya Pradesh	89	631	,	Single	Unconfined	15 - 25	60-175	5-10	1950	60-140	Upto 1.5	1000-1500
Maharashtra	9481	7035	+	Single	Unconfined	10.25	70-130	5-10	6.27	10-80	Upto 1,5	500-1500
Nagaland	178	.,	7	7	Ŷ	5-10	a	5-10	7	ï	97	·
Orissa	u,		109	Single	Unconfined Semi-confined	15 - 20	100-150	÷	1876	172-432	Upta4	500-1500
Rajasthan	17168	555	1174	Single	Unconfined Semi-confined	8.20	20-200	5-10	17-44	14 - 864	Upto 1,5	2000-4000
Sikkim	1	3419	7 =		Unconfined		1=	7 =			0	500-750
Tamil Nadu	,î,	451	51675	Single	Unconfined Semi-confined	3.25	40-160	5-10	12-32	80-2500	Upto 2	1000-2500
Uttarakhand	5736	697	¥	Single	Unconfined Semi-confined	3.15	35-170	5-10	20-80	20-30	Upto 1.5	500-750
Total Area	59260	43266	56228									

DTW : Depth to water level m bgl: Meter below ground level

Table 20 : State wise Distribution and Characteristics of Banded Gneissic Complex (BGC) Aquifer System

	Major Aquifer (Area in sq.km)					Aquifer Properties				
STATE NAME	BGC	Aquifer System	Type of	Thickness of Weathered Zone	Fractures Encountered	DTW (Decadal Avg)	Transmissivity	Yield	Specific Yield	Quality (EC in Mi-
	BG01		Aquirer	ш	mbgl	mbgi	m²/day	m²/day	%	cromnos/cm]
Andhra Pradesh	110284	Single	Unconfined to Semi-confined	3-15	12-60	5-20	6-40	30 - 260	Upto 3	200-3500
Assam	7642	Single	Unconfined to Semi-confined	5-25	α	5-10	6-15	350	7	500-750
Bihar	4214	Single	Unconfined to Semi-confined	10-20	150	5-10	5-50	360-480	Upto 3	500-1000
Chhattísgarh	37756	Single	Unconfined to Semi Confined	Upto 60	α	5-15	2-100	86,4-432	upto 2	500-1000
Goa	£Z\$	Single	Unconfined Semi-confined to Confined	Up to 60	ж	5-10		100 - 400	Upto 3	500-750
Hima chal Pradesh	₩ ₩	Single		At higher ele	At higher elevation area not explored	lored		X	i	500-750
Jammu & Kashmir	11709	1		At higher el	At higher elevation area not explored	lored			ì	>500
Jharkhand	46174	Single	Unconfined, Semi-confined to Confined	Up to 100	T.	5-15	2-186	24 - 3624	Upto 2	500-1000
Karnataka	114943	Single	Unconfined, Semi-confined to Confined	Upta60	,	5.20	2-176	100-400	Upto 2	200-5500
Kerala	1398	Single	Unconfined, Semi-confined	10-40	60-175	5-10	5-145	2-10	Upto 2	
Madhya Pradesh	30253	Single	Unconfined, Semi-confined	5-15	> 150	5-20	5-119	43-210	upto 2	500-1500
Maharashtra	262	Single	9	10-30	30-80	5-10	11:77	10-80	Upto 2	>500
Meghalaya	7204	Single	Unconfined, Semi-confined	5-15	20-40	5-10	5-40	5-10	Upto 2	
Orissa	54951	Single	Unconfined, Semi-confined	12-15	100-200	Y	5-15	258-691	Upto 3	500-1500
Rajasthan	21506	x.	1	10-40	60-170	5-20	345		Upto 2	500-2000
Tamil Nadu	7038	Single	Unconfined, Semi-confined	5:20	40-150	5-10	12-22	150-200	Upto 2	500-4000
Uttarakhand	5008				Not Explored	rred				500-750
Uttar Pradesh	9283	Single	Unconfined, Semi-confined	Upto 40	02	5-20	4-79	43-432	Upto 1.5	500-1000
West Bengal	4893				Not Explored	red				500-1500
Total Area	COCOLD	5								

DTW: Depth to water level m bgl: Meter belowground level

- BGE 1Dhians

RGC AQUIPER SYSTEM - Studistics

Gross Area! (19882.71 Sqlam Perventage : 15.09%

Table 19 : State wise Distribution and Characteristics of Basalt Aquifer System

	Major Aquifers	(Area in sq km)					Aquiter Properties				
STATE NAME	Basic Basalt	Uhna Basir	Aquifer System	Type of Aquifer	Thickness of Weathered Zone	DTW (Decadal Avg)	Fractures Encountered	Transmissivity	Yield	Specific	Quality (EC in Micromhos/ cm)
	BS01	5001			8	m bgl	n bgl	m²/day	m³/day	*	
Andhra Pradesh	3066	0	Single/Multiple	Unconfined to semiconfined	5-20	10-20	40-80	6-740	90-180	1-1,5	1500-2000
Arunachal Pradesh	1397	H					Not Explored.				
Bihar	82	X	Single	Uncanfined	40	5-10	60-130	10-300	100-200	1-1.5	500-1000
Chhattisgarh	836	Ŧ	Single	Unconfined	10-20	5-10	upto 150	5-50	360-480	1-2	500-750
Goa	18	x	Single	Uncanfined	8	5-10	76-120	10-200	100-200	2.3	3500-5000
Gujarat	74297	æ	Single	Unconfined Semi-confined	20-40	5-10	100 - 280	20:20	1:30	1-2	1500-8000
Jammu & Kashmír	6173) ¥-					Not Explored				
Jharkhand	30%	7	Single/Multiple	Uncanfined Semi-canfined	10:35	5-10	100-130	26-176	12-240	2-3	500-750
Karnataka	34892	x.	٠	Unconfined	10-45	5-10	60125	20-180	80-175	1-2	2000-3500
Madhya Pradesh	135433	χ	Single/Multiple	Unconfined to semi confined	15-25	10-20	60-175	100-250	70-350	1,5-2	200-2000
Maharashtra	236903	- 141	Single/Multiple	Unconfined Semi-confined to Confined	15-30	5-10	20-200	20-200	45 - 30	2-3	500-2500
Rajasthan	97.94	iń	a	·x	29.45	10-20	60-120	18180	50-150	1-2	2500-3000
Uttar Pradesh	572	101	Single	Unconfined	5-30	10-20	30-150				500-1000
West Bengal	244	o	Single	8	10.25	5-10	35-30	0			500-750
Total Area	512290	-61									

DTW : Depth to water level m bgl : Meter below ground level

BASALT AQUIFER SYSTEM-Statistics Gross Area: 512302.02 sq.tm Percentage: 16.15 %

Table 18: State wise Distribution and Characteristics of Alluvium Aquifer System

STATE MAME		Ļ												100	
	Younger Alluvium	Rebble/Gravel	Older Alluvium	Aeolian Alluvium	Coastal Alluvium	Valley Fills	Aquifersystem	Ē	Thickness.	Zones Tapped	(Decadal Avg.)	Transmissivity	Vield	Specific	quality (ECirc
	A100	X102	A.003	ALD4	ALDS	ALIDE		Aquifer	E	18qu	mbgi	wep/sm	ma/day	*	Micromhos/cm)
Andhra Pradesh	13204	¥	χ		6920		Multiple	Unconfined	50-80	60-80	2-5	300 to 2000	180 to 264	6-10	500-3000
Arunachal Pradesh	89	æ	4423	1	T		Multiple	Semi-confined Confined	upto 200	20-80	2-5	467 to 3111	1488 to 2400	8-16	200-1000
Assam	52391	1	4678	1-	X		Multiple	Semiconfined	30-200	50-166	2-5	upta 9000	2160104752	8-15	500-750
Bihar	17957	χ	7833	ì	x	i	Multiple	Semi-confined to Confined	50-650	50-248	5-10	3000-12000	200 to 1500.	8-12	500-1000
Chhattisgarh	130	I -		k e	X		Multiple	Unconfined				Not explored			
Delhi	194	α	1056	89	ï		Multiple	Semi Confined to	20-400	50-200	5-10	500-1200	800-2000	8-15	2000-3000
Goa	00	1	1	è	35		Single	Uncanfined	2-10		1	210 2438	005-05	8-8	j
Gujarat	2035	ю	25106	8948	19048	2309	Multiple	Semi-confined to Confined	10-475	50-435	10.20	200-800	200-2000	6-10	2000-5500
Haryana	2751	460	25855	12766	T.	4.	Multiple	Semi-confined to Confined	20-400	50-200	5-10	500,1200	800-2000	6-12	1000-4500
Himachal Pradesh	296	1	186	m	Ť	650	Multiple	Semi-confined to Confined	33-220	50-108	5-10	31-3336	104-5152	6-16	500-750
Jammu & Kashmir	21025	æ	×	2815	T.	1-	Multiple	Semi-confined to Confined	40-160	50-120	5-10	100-600	200-1200	6-15	500-750
harkhand	2927	513	2286	A.	1		Multiple	Semi-confined to confined	40-130	50-70	5-10	208-570	12-960	6-10	500-1000
Karnataka	703	α	x-		r	-	Multiple	Unconfined	20-60	30-60	5-10	2-48	20-500	00	500-2000
Kerala	3145	*	·		4		Multiple	Unconfined	30-350	100-350	2-5	3-275	25,92-86.4	8-16	1
Madhya Pradesh	21714	*	13094	- 1	î.		Multíple	Unconfined	40-300	70-250	5-10	200-6700	864-2592	8-12	500-1000
Maharashtra	12427	434	080	ż	1236	4.	Multiple	Semi-confined to confined	50-400	80-300	10-20	63-136	13-56	6-10	500-1500
Manipur	1897	ï	x	1	2059	4	Multiple	Semi-confined to	50-100	20-80	5-10	200-800	240-720	8-15	1500
Meghalaya	1002	ì	ŝ	7.	ż	4		2			Not Explored				j
Nagaland	537	X	3		3.		Multiple	Unconfined	40-100	0Z-D4	5-10	100-9000	864-3888	8-15	500-1500
Orissa	6773	¥	24941	595	5405	ų.	Multiple	Semi-confined to confined	20-400	70-350	2-5	15-8000	70-6480	8-,15	500-2000
Puducherry	310	×.	x	,	112		,	X	7	ý	2-5	×	J.	8-14	1000-3000
Punjab	5592	460	33094	1968	X	322	Multiple	Semi-confined to Confined	20-600	70 - 450	10-20	100-7720	432-5184	8-15	500-2000
Rajasthan	3390	10	80114	114989			Multiple	Semi-confined to Confined	40-700	50-400	10-40	200-400	500-1200	8-10	0
Tamil Nadu	16915	æ	X	95	5845	**	Multiple	Confined	40-400	70-350	2-5	20+2000	10-690	8-9	1000-3000
Tripura	602	α-	α-	111	r		Multiple	Semi-confined to Confined	10-15	ī	α	α٠	240	r	500-1000
Uttarakhand	029	1247	6277	- 4	i.		Multiple	*	30-200	50-100	5-10	30-3000	100-2000	8-15	500-750
Uttar Pradesh	37437	1960	172526	-	4		Multiple	Confined	100-650	100-650	5-10	upto 16000	1500-4000	8-18	20053000
West Bengal	51464	œ	5940	-7-	y	571	Multiple	Semi-confined to Confined	50-700	50-400	5-10	600-4000	200-1500	8-20	500-2000
Total Area	339298	5203	407490	149208	40660	3864									

DTW: Depth to water level m bgl: Meter below ground level

A105

87

CLOY

A G

MON 107V

Gross Areas 945753, 55 sq.Knr

Percelage : 29.82 %

29.67

Alusium Others

Table 6: Population Census - India

					Population		
		Area		Total Population	1	Sex ratio	
SI. No.	Name of the State	(Sq. Km)	Persons	Males	Females	(females per 1000 males)	Density (Per sq.km)
1	Andhra Pradesh	275069	84665533	42509881	42155652	992	308
2	Arunachal Pradesh	83743	1382611	720232	662379	920	17
3	Assam	78438	31169272	15954927	15214345	954	397
4	Bihar	94163	103804637	54185347	49619290	916	1102
5	Chhattisgarh	136034	25540196	12827915	12712281	991	189
6	Goa	3702	1457723	740711	717012	968	394
7	Gujarat	196024	60383628	31482282	28901346	918	308
8	Haryana	44212	25353081	13505130	11847951	877	573
9	Himachal Pradesh	55673	6856509	3473892	3382617	974	123
10	Jammu & Kashmir	222236	12548926	6665561	5883365	883	124
11	Jharkhand	79714	32966238	16931688	16034550	947	414
12	Karnataka	191791	61130704	31057742	30072962	968	319
13	Kerala	38863	33387677	16021290	17366387	1084	859
14	Madhya Pradesh	308144	72597565	37612920	34984645	930	236
15	Maharashtra	307713	112372972	58361397	54011575	925	365
16	Manipur	22327	2721756	1369764	1351992	987	122
17	Meghalaya	22429	2964007	1492668	1471339	986	132
18	Mizoram	21081	1091014	552339	538675	975	52
19	Nagaland	16579	1980602	1025707	954895	931	119
20	Orissa	155707	41947358	21201678	20745680	978	269
21	Punjab	50362	27704236	14634819	13069417	893	550
22	Rajasthan	342240	68621012	35620086	33000926	926	201
23	Sikkim	7096	607688	321661	286027	889	86
24	Tamil Nadu	130058	72138958	36158871	35980087	995	555
25	Tripura	10493	3671032	1871867	1799165	961	350
26	Uttar Pradesh	240928	199581477	104596415	94985062	908	828
27	Uttarakhand	53484	10116752	5154178	4962574	963	189
28	West Bengal	88752	91347736	46927389	44420347	947	1029
29	Andaman & Nicobar Islands	8249	379944	202330	177614	878	46
30	Chandigarh	114	1054686	580282	474404	818	9252
31	Dadra & Nagar Haveli	491	342853	193178	149675	775	698
32	Daman & Diu	112	242911	150100	92811	618	2169
33	Delhi	1483	16753235	8976410	7776825	866	11297
34	Lakshadweep	32	64429	33106	31323	946	2013
35	Puducherry	479	1244464	610485	633979	1038	2598
	Total	3288015	1210193422	623724248	586469174	933	325

source: censusindia.gov.in-Census-2011

Table 16 : Districts showing Arsenic in Ground Water In different states of India

SI. No.	State Assam Bihar	Name of districts (in parts) with Arsenic (As> 0.05 mg/l) in Ground Water Dhemaji Begusarai, Bhagalpur, Buxar, Darbhanga, Katihar, Khagaria, Kishanganj, Lakhiserai, Munger, Patna, Purnea, Samastipur, Saran, Vaishali
m	Chhattisgarh	Rajnandgaon
4	Uttar Pradesh	Agra, Aligarh, Balia, Balrampur, Gonda, Gorakhpur, Lakhimpur Kheri, Mathura, Muradabad
Σ	West Bengal	Bardhaman, Hooghly, Howrah, Malda, Murshidabad, Nadia, North 24 Paraganas, South 24 Paraganas

Data Source - Central Ground Water Board along with Task force & State Agencies

Table 15: Districts showing Nitrate in Ground Water in Different States of India

SI. No.	State	Name of districts (in parts) with Nitrate (>45 mg/litre) in Ground Water
1	Andhra Pradesh	Adilabad, Anantpur, Chittoor, Cuddapah, East Godavari, Guntur, Hyderabad, Karimnagar, Khammam, Krishna, Kur- nool, Mahbubnagar, Medak, Nalgonda, Nellore, Nizamabad, Prakasam, Ranga Reddy, Srikakulam, Visakhapatnam, Vizianagaram, Warangal, West Godavari
2	Bihar	Aurangabad, Banka, Bhagalpur, Bhojpur, Kaimur(Bhabua), Patna, Rohtas, Saran, Siwan
3	Chhattisgarh	Bastar, Bilaspur, Dantewada, Dhamtari, Jashpur, Kanker, Kawardha, Korba, Mahasamund, Raigarh, Raipur, Rajnandgaon
4	Delhi	Central Delhi, New Delhi, North Delhi, North West Delhi, South Delhi, South West Delhi, West Delhi
5	Goa	North Goa
6	Gujarat	Ahmadabad, Amreli, Anand, Banaskantha, Bharuch, Bhavnagar, Dohad, Jamnagar, Junagadh, Kachchh, Kheda, Mehsana, Narmada, Navsari, Panchmahals, Patan, Porbandar, Rajkot, Sabarkantha, Surat, Surendranagar, Vadodara,
7	Haryana	Ambala, Bhiwani, Faridabad, Fatehabad, Gurgaon, Hissar, Jhajjar, Jind, Kaithal, Karnal, Kurukshetra, Mahendragarh, Panchkula, Panipat, Rewari, Rohtak, Sirsa, Sonepat, Yamuna Nagar
8	Himachal Pradesh	Una
9	Jammu & Kashmir	Jammu, Kathua
10	Jharkhand	Chatra, Garhwa, Godda, Gumla, Lohardaga, Pakaur, Palamu, Paschimi Singhbhum, Purbi Singhbhum, Ranchi, Sa- hibganj
11	Karnataka	Bagalkot, Bangalore, Belgaum, Bellary, Bidar, Bijapur, Chikmagalur, Chitradurga, Davangere, Dharwad, Gadag, Gul- burga, Hassan, Haveri, Kodagu, Kolar, Koppal, Mandya, Mysore, Raichur. Shimoga, Udupi, Uttara Kannada
12	Kerala	Alappuzha, Idukki, Kollam, Kottayam, Kozhikode, Malappuram, Palakkad, Pathanamthitta, Thiruvananthapuram, Thrissur, Wayanad
13	Maharashtra	Ahmednagar, Akola, Amravati, Auragabad, Beed, Bhandara, Buldana, Chandrapur, Dhule, Gadchiroli, Gondia, Hingoli, Jalgaon, Jalna, Kohlapur, Latur, Nagpur, Nanded, Nandurbar, Nashik, Osmanabad, Parbhani, Pune, Sangli, Satara, Solapur, Wardha, Washim, Yavatmal
14	Madhya Pradesh	Anuppur, Ashok Nagar, Balaghat, Barwani, Betul, Bhind, Bhopal, Burhanpur, Chhatarpur, Chhindwara, Damoh, Datia, Dewas, Dhar, Gwalior, Harda, Hoshangabad, Indore, Jabalpur, Jhabua, Katni, Khandwa, Khargaon, Mandla, Mandsaur, Morena, Narsimhapur, Neemuch, Panna, Raisen, Rajgarh, Ratlam, Rewa, Sagar, Satna, Sehore, Seoni, Shajapur, Sheopur, Shivpuri, Sidhi, Tikamgarh, Ujjain, Umaria, Vidisha
15	Orissa	Angul, Balasore, Bargarh, Bhadrak, Bolangir, Baudh, Cuttack, Deogarh, Dhenkanal, Gajapati, Ganjam, J.Singhpur, Jajpur, Jharsuguda, Kalahandi, Kendrapara, Keonjhar, Khurda, Koraput, Malkangiri, Mayurbhanj, Nawapada, Na- yagarh, Phulbani, Puri, Sambalpur, Sundergarh, Sonapur
16	Punjab	Amritsar, Bhathinda, Faridkot, Fatehgarh Sahib, Firozepur, Gurdaspur, Hoshiarpur, Jalandhar, Kapurthala, Ludhiana, Mansa, Moga, Muktsar, Nawan Shahr, Patiala, Rupnagar, Sangrur
17	Rajasthan	Ajmer, Alwar, Banaswara, Baran, Barmer, Bundi, Bharatpur, Bhilwara, Bikaner, Chittaurgarh, Churu, Dausa, Dhaul- pur, Dungarpur, Ganganagar, Hanumangarh, Jaipur, Jaisalmer, Jalor, Jhalawar, Jhunjhunu, Jodhpur, Karauli, Kota, Nagaur, Pali, Partapgarh, Rajsamand, Sirohi, Sikar, Sawai Madhopur, Tonk, Udaipur
18	Tamil Nadu	Chennai, Coimbatore, Cuddalore, Dharmapuri, Dindigul, Erode, Kancheepuram, Kanyakumari, Karur, Madurai, Namakkal, Nilgiris, Perambalur, Pudukkottai, Ramanathapuram, Salem, Sivaganga, Theni, Thiruvannamalai, Thanja- vur, Tirunelveli, Thiruvallur, Trichi, Tuticorin, Vellore, Villupuram, Virudhunagar
19	Uttar Pradesh	Agra, Aligarh, Allahabad, Ambedkar Nagar, Auraiya, Badaun, Baghpat, Balrampur, Banda, Barabanki, Bareilly, Basti, Bijnor, Bulandshahr, Chitrakoot, Etah, Etawa, Fatehpur, Firozabad, GB Nagar, Ghaziabad, Ghazipur, Hamirpur, Har- doi, Jaunpur, Jhansi, Kannauj, Kanpur Dehat, Lakhimpur, Mahoba, Mathura, Meerut, Moradabad, Muzaffarnagar, Raebareli, Rampur, Sant Ravidas Nagar, Shahjahanpur, Sitapur, Sonbhadra, Sultanpur, Unnao
20	Uttrakhand	Dehradun, Hardwar, Udhamsinghnagar
21	West Bengal	Bankura, Bardhaman

Table 14: Districts Showing Fluoride in Ground Water in different states of India

Sl.No	State	Name of districts (in parts) with Flouride (>1.5mg/litre) in Ground Water
1	Andhra Pradesh	Adilabad, Anantpur, Chittoor, Guntur, Hyderabad, Karimnagar, Khammam, Krishna, Kurnool, Mahbubnagar, Medak, Nalgonda, Nellore, Prakasam, Ranga Reddy, Visakhapatnam, Vizianagaram, Warangal, West Godavari
2	Assam	Goalpara, Kamrup, Karbi Anglong, Nagaon,
3	Bihar	Aurangabad, Banka, Buxar, Jamui, Kaimur(Bhabua), Munger, Nawada, Rohtas, Supaul
4	Chhattisgarh	Bastar, Bilaspur, Dantewada, Janjgir-Champa, Jashpur, Kanker, Korba, Koriya, Mahasamund, Raipur, Rajnandgaon, Surguja
5	Delhi	East Delhi, North West Delhi, South Delhi, South West Delhi, West Delhi
6	Gujarat	Ahmadabad, Amreli, Anand, Banaskantha, Bharuch, Bhavnagar, Dohad, Junagadh, Kachchh, Mehsana, Nar- mada, Panchmahals, Patan, Rajkot, Sabarkantha, Surat, Surendranagar,Vadodara,
7	Haryana	Bhiwani, Faridabad, Gurgaon, Hissar, Jhajjar, Jind, Kaithal, Kurushetra, Mahendragarh, Panipat, Rewari, Roh- tak, Sirsa, Sonepat
8	Jammu & Kashmir	Rajauri, Udhampur
9	Jharkhand	Bokaro, Giridih, Godda, Gumla, Palamu, Ranchi
10	Karnataka	Bagalkot, Bangalore, Belgaun, Bellary, Bidar, Bijapur, Chamarajanagar, Chikmagalur, Chitradurga, Davangere, Dharwad, Gadag, Gulburga, Haveri, Kolar, Koppal, Mandya, Mysore, Raichur, Tumkur
11	Kerala	Palakkad
12	Maharashtra	Amravati, Chandrapur, Dhule, Gadchiroli, Gondia, Jalna, Nagpur, Nanded
13	Madhya Pradesh	Bhind, Chhatarpur, Chhindwara, Datia, Dewas, Dhar, Guna, Gwalior, Harda, Jabalpur, Jhabua, Khargaon, Mandsaur, Rajgarh, Satna, Seoni, Shajapur, Sheopur, Sidhi
14	Orissa	Angul, Balasore, Bargarh, Bhadrak, Bandh, Cuttack, Deogarh, Dhenkanal, Jajpur, Keonjhar, Sonapur
15	Punjab	Amritsar, Bhatinda, Faridkot, fatehgarh Sahib, Firozepur, Gurdaspur, Mansa, Moga, Muktsar, Patiala, Sangrur
16	Rajasthan	Ajmer, Alwar, Banaswara, Barmer, Bharatpur, Bhilwara, Bikaner, Bundi, Chittaurgarh, Churu, Dausa, Dhaul- pur, Dungarpur, Ganganagar, Hanumangarh, Jaipur, Jaisalmer, Jalor,Jhunjhunun, Jodhpur, Karauli, Kota, Na- gaur, Pali, Rajsamand, Sirohi, Sikar, SawaiMadhopur, Tonk, Udaipur
17	Tamil Nadu	Coimbatore, Dharmapuri, Dindigul, Erode, Karur, Krishnagiri, Namakkal, Perambalur, Puddukotai, Rama- nathapuram, Salem, Sivaganga, Theni, Thiruvannamalai, Tiruchirapally, Vellore, Virudhunagar
18	Uttar Pradesh	Agra, Aligarh, Etah, Firozabad, Jaunpur, Kannauj, Mahamaya Nagar, Mainpuri, Mathura, Mau
19	West Bengal	Bankura, Bardhaman, Birbhum, Dakshindinajpur, Malda, Nadia, Purulia, Uttardinajpur

Table 13: Districts showing Salinity in Ground Water in Different States of India

Sl. No.	State	Name of districts (in parts) with EC > 3000 μS/cm in Ground Water
1	Andhra Pradesh	Anantapur, Chittoor*,Kurnool, Kadapa(Cuddapah), Nellore, Prakasam, Guntur, Mahbubnagar, Nalgonda, Krishna, Kham- mam, Warangal, Medak, East Godavari, Srikakulam, Visakhapatnam
2	Delhi	North West, West, South West
3	Gujarat	Ahmadabad, Amreli, Anand, Bharuch, Bhavnagar, Banaskantha, Dohad,Porbandar, Jamnagar, Junagadh, Kachchh, Kheda, Mehsana, Navsari, Patan, Panchmahals, Rajkot, Sabarkantha, Surendranagar, Surat, Vadodara,
4	Haryana	Bhiwani, Faridabad , Fatehabad, Gurgaon, Hissar, Jhajjar, Kaithal, Mahendragarh, Panipat, Rewari, Rohtak, Sirsa, Sonepat, Yamunanagar*
5	Himachal Pradesh	Mandi*
6	Karnataka	Bijapur,Bagalkot, Belgaun, Bellary, Chitradurga, Chikmagalur, Davangiri, Dharwar,Gadag, Gulburga, Hassan*, Haveri, Man- dya*, Raichur, Udupi
7	Kerala	Palakkad*
8	Maharashtra	Ahmadnagar,Aurangabad*,Akola, Amravati, Beed*, Buldana, Chandrapur, Dhule*, Jalna,Jalgaon,Nagpur*,Nasik, Parbhani, Raigarh*, Satara, Solapur*, Wardha
9	Madhya Pradesh	Bhind, Indore, Jhabua*, Sheopur*, Ujjain
10	Orissa	Jagatsinghpur*
11	Punjab	Bhathinda, Firozepur, Faridkot, Gurudaspur*, Mansa, Muktsar, Patiala*,Sangrur
12	Rajasthan	Ajmer, Alwar, Barmer, Bharatpur, Bhilwara, Bundi, Bikaner, Churu, Chittaurgarh, Dhaulpur, Dausa, Ganganagar, Hanumangarh, Jaipur, Jaisalmer, Jalor, Jhunjhununn, Jodhpur, Karoli, Nagaur, Neemuch, Pali, RajaSamand, Sirohi, Sikar, Sawai Madhopur, Tonk, Udaipur
13	Tamil Nadu	Coimbatore, Chennai, Cuddalore, Dindigul,Dharmapuri, Erode, Pudukkottai, Ramanathapuram, Salem, Karur, Namakkal, Perambalur, Thiruvannamalai, Tiruchirapalli, Thanjavur, Thoothukkudi, Tirunelveli, Theni*,Vellore, Vilupuram, Virudhana- gar
14	Uttar Pradesh	Agra, Allahabad*, Aligarh, Hamirpur*, Hathras, Jyotibaphulenagar*, Mathura
15	West Bengal	Bankura*,Haora, Medinipur,N-24 Pargana, S-24 Parganas

^{*} Isolated Pockets

Table 12: State wise Post Monsoon Depth to Water level (Decadal Mean 2002 - 2011)

	Alluvium	m	Laterite	B)	Basalt	SS	Sandstone	S	Shale	Limes	Limestone	Granite	ite	Schist	-	Quartrite		Charnockite		Khondalite	BG	BGC	Gneiss	iss	Intrusives	ves
State Name	Min	Max	Min	Max	Min Max	w Min	n Max	With	Max	Min	Max	Min	Max	Min	Max	NO. N	Mex	Min Max	Min	Max	Min	Max	Min	W W	Min	Max
Andhra Pradesh	0.1	17.7	0.1	17.7	0.1 10.4	4 0.1	10.4	2.0	10.4	2.0	9.9	2.0	17.7	0.1	17.7	0.1	10.4 0	0.1 10.4	0.1	9.9	0.1	17.7	1.0	17.7	10.4	17.7
Arunachal Pradesh	0.1	4.6				2.0	3,6	0.1	4.6	2.0	3.0			2.0	3.0	2.0	3.0									
Assam	0.1	10.4				0.1	9.9	0.1	9.9	2.0	3.0	0.1	9.9	2.0	3.0	0.1	9.9				0.1	6.6				
Bihar	0.1	9.9	3,6	4.6	3.6 4.6	6 2.0	9'9 0	3.6	9.9	3.6	9.9	3.0	9.9	2.0	9'9	2.0	6.6 3	3,6 4.6			2,0	9'9	2.0	9.9	3.0	4.6
Chandigarh	10.4	31.9				10.4	4 17.7																			
Chhattisgarh	3,0	9'9	2.0 1	10.4	3.0 10.4	.4 2.0	17.7	0,1	10.4	0.1	9.9	2.0	10.4	2.0	17.7	2,0 1	10.4 2	2.0 10.4	2.0	3,6	2.0	17.7	2.0	17.7	2.0	9.9
Dadra & Nagar Haveli		H			2.0 4.6	و	Ц				1					11										7
Daman & Diu					3.6 4.6	و				4.6	9.9															
Delhi	4.6	17.7		Ì		H									-	10.4	17.7		4							Ť
Goa	2.0	6,6	2.0 1	10,4	2.0 6.6	9.6	5 10.4					2.0	3.6	2.0	10.4	3,0	4,6				2,0	10.4			2.0	9.9
Gujarat	2.0	31,9	4.6	10.4	2.0 31.9	9.6	31.9	3.0	31.9	3.6	31.9	3.6	31.9	3.6	31.9	4.6	17.7		-		4.6	9.9	3.6	31.9	4.6	10.4
Haryana	3,6	59.4				6.6	5 17.7	10.4	17.7					10.4	17.7	5.6	59.4						10.4	17.7		
Himachal Pradesh	3.0	17.7				3.0	7.71 0	10.4	17.7			4.6	5,6			1		h								i
Jammu & Kashmir	3.6	6.6				4.6	9.9					1														
Jharkhand	2.0	10.4	2.0	10.4	3.0 10.4	.4 2.0	10.4	2.0	6.6	3.0	10.4	2.0	6.6	2.0	10.4	2.0 1	10.4	3.0 4.6			2.0	10.4	3.0	10.4	2.0	10.4
Karnataka	2.0	10.4	2.0 1	17.7	2.0 17.7	7 2.0	17.7	3.6	4.6	2.0	17.7	2.0	17.7	2.0	17.7	1- II 1- II	4	4.6 17.7			2.0	17.7	4.6	17.7	2.0	17.7
Kerala	0.1	10.4	0.1	10.4		9.9	5 10,4					4.6	10.4	3.6	10.4	3.6	6.6 0	0.1 10.4	3.0	10.4	3.6	10.4	2.0	17.7	3,6	10.4
Madhya Pradesh	3.0	31.9	2.0 1	17.7	2.0 319	9 2.0	17.7	2.0	17.7	2.0	17.7	2.0	17.7	2.0	277	2.0 1	17.7				2.0	17.7	3.0	10.4	3.0	10,4
Maharashtra	0.1	17.7	2.0 1	17.7	0.1 17.7	7 2.0	17.7	2.0	9.9	3.6	10.4	2.0	9.9	2.0	9'9	2.0	6.6 4	4.6 6.6			2.0	10.4	2.0	10.4	3.0	9.9
Manipur	0.1	3.0				0.1	3.0	2.0	3.0							14										H
Meghalaya	1.0	4.6				0.1	3,6	0.1	9.9			0.1	9.9		0	0.1	9.9				0.1	9'9				
Mizoram	0.1	3.0				2.0	3.6	0.1	4.6							-							Ī			
Nagaland	2.0	9.9				0.1	9'9 1	0.1	4.6							11							ij			
Orissa	0.1	10.4	0.1	10.4		2.0	10.4	2.0	9'9			2.0	9.9	2.0	9.9	2,0	0 9'9	0.1 10.4	1,0	10.4	0.1	10.4	2.0	9.9	2:0	9'9
Puducherny	0.1	17.7	2.0	3.6		3.6	5 10.4										9	6.6 10.4					2.0	17.7		
Punjab	0.1	31.9				3.6	271 3					4.6	9.9													
Rajasthan	3,6	112.6	4.6	17.7	3.6 31.9	9 3.6	5 112.6	3,0	112.6	3.6	112.6	3.6	59.4	4.6	112.6	4.6	112.6 6	6.6 17.7	9.9	17.7	3.6	59.4	3.6	59.4	4.6	59.4
Sikkim	3.6	4.6										3.6	4.6	9.6	9,4	3.6	4.6		1		3.6	4.6	3.6	4.6		
Tamil Nadu	0.1	31.9	2.0 3	31.9		0.1	1 59.4	2.0	31.9	9.9	31.9	3,0	17.7	9.6	17.7	4.6	10.4 0	0.1 17.7	2.0	17.7	2.0	17.7	2.0	31.9	3.0	17.7
Tripura	2.0	4.6		i		2.0	0 4.6	2.0	4.6							1-4	-		4						1	
Uttarakhand	3.0	17.7				3.6	5 17.7								-								#			
Uttar Pradesh	0.1	31,9			4.6 10.4	4 3.6	5 17.7	3.6	17.7	3.6	6.6			4.6	9.9	2.0 1	17.7				2.0	10.4	4.6	10.4	9.4	9.9
West Bengal	0.1	10.4	2.0 1	10.4	2.0 6.6	6 2.0	9.9	2.0	4.6	3.0.	4.6	2.0	6,6	2.0	10.4	3.0	4.6				2.0	6.6	2.0	6.6	2.0	9.9
India	0.1	112.6	0.1	31.9	0.1 31.9	9 0.1	112.6	0.1	112.6	0.1	112.6	1.0	59.4	0.1	112.6	1 1.0	112.6 0	17.7	0.1	17.7	0.1	59.4	10	59.4	2.0	59.4
Thit is by (meter below around level)	Pullouna	(Joseph			d								. 1		,	. 1	4			d						

Unit: m bgl (meter below ground level)

Table 11: State wise Pre-monsoon Depth to Water Level (Decadal mean 2002-2011)

Many control based by	State Name	Alluvium	ium	Later	ite	Basalt	20	Sandstone	au	Shale	5	Limestone		Granite	S	Schist	no	Quartrite	Char	Charnockite	Khan	Khandalite	BC	BGC	Gneiss	iss	intrusives	ives
Majority Si		Min	Max	Min	Max		XelV					÷			Min	Max	Min	Max	Min	Max	Min	Mas	Min	Max	Mfn	Max	Min	Max
Mellingelingelingelingelingelingelingelin	Andhra Pradesh	6.4	50 50			-	7:01	0	o,	ω, .∞	Ó	ō,	, G	0	6.1		6.2	7.8		6.7			6.1		6.1	7.8		13,3
Montholity	Arunachal Pradesh	1.9	4.5				4.0		14	6 4			0.0	4	0.0	4.0	0.0	4.0					-		0.0	4.0		
Hately Region Signature Si	Assam	3,6	5.7				Ħ	10	20	0.	M			ব			2.1	4.6					2.0	4.7		14	T	
Heading See	Bihar	3.6	5.7	5.3	6.3	2	2.9	(4)	ıΩ	.5 7.	ம்	9	Ġ.	7			6.8	8.0	9.0	7.0			6.8		6,4	9.0		7.9
Majori Si	Chandigarh	10.0	20.0						20,02																			
According to the properties of	Chhattisgarh	6.3	7.6	7.1	8.3		6.8	(F)	ব	6 7.			7	80	7.1	8.3	7.3	8.8	9'9	8.2	6.0	7.0	7.2	8.8		4.0		9.6
mathematical field of the control of	Dadra & Nagar Haveli					00		11																				
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Dantan & Diu					In.	0.6																					
 31. 3. 4. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	Delhi	7.7	10.6					11	-	1			11			**	6.5	7.5									i	
by the by	Goa	3.5	5.1	3.6	5.3		6.1	.,	4.5		3.6	35	4	,	4.8	5.9	5.0	0.9					3.7	5.5		H	5.0	2.3
Holmande 18 1 11 1	Gujarat	9.9	16.6	10.0	20.0	0.	16.0	lo.			10	7.	10	20		18.8	9.8	191			i		9.0	15.0	101	19.7		15.7
Mathematical	Haryana	8.9	16.0					100			_				10.0	20.0	13.5								10.0	20,0		
binding is in the control of the con	Himachal Pradesh	7.5	10.7	Ī	İ		Ħ	10	Ø 14	7	are.	21	8.0			12.1	8.1	12.7					6.8	8.5	7.7	11.3	0.9	10.0
binding in the bindin	Jammu & Kashmir	5.1	7.1		Ì	2		σį	1	, po			4.0	9	5,3	6.7						Ľ	3.9	8.5	3.1	5.4	4.7	6.1
belong to significant and the control of the contro	Jharkhand	7.4	1.6	7.2	8.7	H		7	9	οņ	7	86	7	86			7.6	9.4	6.7	7.7			7.1	8.4	7.0	8.2	6.9	8.0
94 66 68 68 68 68 69 79<	Karnataka	6.9	8.2	7.5	9.8	9		m	-	.0.	7	6	6.	8.					8.0	12.2	-		7.0	9.5	7.6	10.9	0.9	7.3
vial size 3.4 3.6 3	Kerala	5.6	9.6	6,0	8.2				10,01		6.0	8,	9	8,		6.8	8,3	12.7	5.3	7.8	2.2	1'2	7.0	10.3	6.3	8,5	2.9	10.7
 43 43 44 45 <	Madhya Pradesh	9.4	16.8	7.9	11.5	2	12.0	7		7 14	7	11	7	6		10.5	8.1	10.9					7.6	10.7	8.0	10.3	7.7	9.4
out 43 7.2	Maharashtra	5.4	10,01	6.8	8.8	7	13.3	Ď,		2 9	9	8	7	8			6.9	8.3	8.0	10.0				111		9.4	7.5	1.6
 49. 3. 5. 5. 4. 4. 5. 5. 4. 4. 5. 4. 4. 6. 4. 6. 4. 6. 4. 6. 4. 6. 4. 6. 4. 6. 4. 6. 4. 6. 4. 6. 4. 6. 4. 6. 4. 6. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	Manipur	4.9	7.2				Ħ	υç	2	7	2)									- 4					13.0
 and b. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Meghalaya	3.7	5.6	Н			H	1	0	.6 4.		1	0.5	4			1.0	4.3					1.8					
 44 1 12	Mizoram	0.0	4.0					2	4	8 4																		d
 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	Nagaland	6.4	17					$\stackrel{\sim}{\leftarrow}$	6.	.2	1															7.0	6.0	
thery4.25.84.05.05.05	Orissa	3.7	2.2	5.0	6.3				2	7 6	5	.9	5.	. 6.			23			6.6	5.4				5.3	6.3	6.1	7.3
that 15 1	Puducherry	4.2	5.8	4.0	5.0							S		1					4.0	5.0					5.3	6.3		
that 155 359 176 178 178 178 178 178 179 <td>Punjab</td> <td>7.4</td> <td>12.0</td> <td></td> <td>İ</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>4.0</td> <td>S</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>j</td> <td></td> <td></td>	Punjab	7.4	12.0		İ			1					4.0	S									+			j		
Nadiu 5.5 6.1 4.0 5.0 6.5 6.5 6.5 7.3 6.5 6.5 7.3 6.5 6.5 7.3 6.5 7.5 6.5 7.5 6.5 7.5 </td <td>Rajasthan</td> <td>15.5</td> <td>35.9</td> <td>9.4</td> <td>17.0</td> <td>.2</td> <td>8</td> <td>99</td> <td></td> <td>27</td> <td>6</td> <td>17</td> <td>15.</td> <td></td> <td>13.3</td> <td></td> <td>14.4</td> <td></td> <td>10.0</td> <td>20.0</td> <td>10.0</td> <td>20.0</td> <td>11.5</td> <td>24.0</td> <td>11.3</td> <td>23.4</td> <td>11.3</td> <td>23.3</td>	Rajasthan	15.5	35.9	9.4	17.0	.2	8	99		27	6	17	15.		13.3		14.4		10.0	20.0	10.0	20.0	11.5	24.0	11.3	23.4	11.3	23.3
Nadu 5.6 4.5 7.5 4.6 8.7 5.9 7.5 4.9 5.9 7.9 4.9 5.9 7.9 4.9 5.9 7.9 4.9 5.9 7.9 4.9 5.9 7.9 7.0 7.0 4.9 5.9 7.9 7.0 <td>Sikkim</td> <td>5.3</td> <td>6.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5 6.</td> <td></td> <td></td> <td></td> <td>5</td> <td>4.7</td> <td></td> <td>4.0</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td>5.0</td> <td>6.0</td> <td>4.7</td> <td>5.7</td> <td></td> <td>+</td>	Sikkim	5.3	6.3							5 6.				5	4.7		4.0	5.0					5.0	6.0	4.7	5.7		+
skhand 7.9 13.1 7.7 9.3 8.4 1.4 1.0	Tamil Nadu	5.6	8.1			1 1		4	9	9	S.	7.	4	11			4.9			10.3			7.6	11.4			8.1	13.4
Neadesh 7.2 13.1 7.2 8.3 14.1 10.3 20.0 10.0 20.0 10.9 10.5 <th< td=""><td>Tripura</td><td>1.6</td><td>4.5</td><td></td><td></td><td></td><td></td><td>9</td><td>80</td><td>2 4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Tripura	1.6	4.5					9	80	2 4																		
Pradesh 7.2 10.9 7.7 9.3 8.1 12.3 7.5 9.8 7.6 9.9 7.6 9.5 7.6 10.5 7.6 10.5 7.6 9.9 7.2 9.9 7.2 9.2 9.0 10.0 9.0 10.0 9.9 7.2 9.2 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10	Uttarakhand	7.9	13.1					4	- 21		34	1 1	101	-	7	22.0	6.6	18.9					11.6	24.0	11.0	22.3	10.8	22.5
Bengal 5.9 7.3 6.6 8.5 7.5 6.6 8.5 7.6 9.9 7.2 9.2 8.0 10.0 8.3 7.7 6.5 7.8 6.6 7.9 7.6 9.2 8.0 10.0 8.3 7.7 6.5 7.8 6.6 8.0 3.6 2.0 3.9 2.7 3.6 2.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 4.7<	Uttar Pradesh	7.2	10.9			No.				6					7,8		7.6	10.5					7.5	10.1	8.0	10.0	8.0	10.0
9.0 35.9 3.6 20.0 0.0 16.8 0.0 39.8 1.6 27.9 3.6 20.0 0.0 29.2 0.0 32.8 4.0 20.0 5.4 20.0 1.8 24.0 0.0 23.4 4.7	West Bengal	5.9	7.3	9,9	9.5	1	6.8	ব	00	2 7.	9	00	2	6			8,0	10.0					6.3	7.7	6.5	7.8	9.9	8.3
	India	0.0	35.9	3,6	20,0		8.91			27	6				0'0	29.2	0'0	32,8	4.0	20.0		20.0	1.8	24,0	0.0	23,4	4.7	23.5

Unit: mbgl (meter below ground level)

Table 10 : State wise and Aquifer wise distribution of GW Observation Wells (Dugwells/ Peizometers) - Number of Wells per Toposheet (Wells / 720 sq km)

State Name 1	Total Area (sq km)	Enianily	Laterite	Basalt	Sandston	Shale	LIMESTOR		a SCDIS		CIBILOCKIE	Shoridalite	BGC	Riena	Intrusives	Unclassified	Š	Total No of PZ	Total
Andamen & Nicober Islands	6701	\$ 0	% 0	VN ∀(0)	¥0	¥(0)		¥9			¥(0)	¥0	¥(0)	¥ @	AN (0)	64 (7)	64	0	64
	268105	67/31 (4)	8/8 (7)	19/16 (3)	44/33 (3)	30/19 (2)	20/12	27/27	24/9	(1)	28/10 (2)	53/7	212/222	40/7	:-0	- ()	580	402	982
Arunachal Pradesh	79334	8(I)	X (0)	-0	-©	4(0)		- <u>©</u>			¥(0)	¥ ©	¥(0)	- <u>()</u>	¥(0)	-0	12	0	12
	75576	255/10 (3)	X (0)	% (0)	8(1)	(2)		Y (0)			X (0)	Y (0)	(3)	X (0)	¥(0)	-0	292	10	302
	90549	315/12 (3)	-0	(21)	£(I)	-0		- <u>©</u>			-©	¥(0)	63)	-()	-0	• (0)	329	12	341
	115	1/27 (175)	A(0)	A(0)	-(i)	N(0)		N. (0)			NA (0)	(D)	N.A (0)	N(0)	N, (0)	NA (0)	1	27	28
	130908	(11)	m(E)	7 (2)	87/54 (4)	76/48 (6)	_	14 (4)			(3)	- <u>@</u>	143/52 (4)	61/30	4 (1)	X (0)	461	248	709
Dadra & Nagar Haveli	477	MA (0)	¥ (0)	(11)	¥ (0)	¥ (0)		(D)			¥(0)	Y (0)	¥(0)	% (0)	% (0)	¥(0)	7	0	7
	81	¥(0)	¥ (0)	(189)	≨ (0)	¥(©)		V (0)			¥(0)	4 (0)	M (0)	¥(0)	M (0)	- 0	6	25	14
	1455	19/12 7 (80)	¥ (0)	∑ (©)	¥ (0)	¥(©)		V (0)			¥(0)	4 (0)	V (0)	¥(0)	M (0)	¥(0)	25	137	162
	3553	• <u>(</u>)	19/32 (23)	(21)	2/11 (35)	¥(0)		(39)			M (0)	4 (0)	5/11 (36)	¥(0)	(13)	¥(0)	43	59	102
	175560	201/25 7 (5)	(14)	273/53	28/16	20/9		13/5			X (0)	¥ (0)	¥(0)	10/2	-8	G)	637	376	1013
	42769	196/265 (8)	X (0)	∑ (0)	(2)	¥(0)		(0)			% 0	4 (0)	¥(0)	- <u>@</u>	¥(0)	¥(0)	198	266	464
Himachal Pradesh	54596	36 (14)	\$ @	\$ 0	(3)	(B)		- <u>@</u>			% (0)	Y (0)	- @	- <u>@</u>	• <u>@</u>	% (0)	68	0	68
Jammu& Kashmir	221487	106/19 (4)	¥©	- <u>@</u>	(I)	- <u>@</u>		- <u>@</u>			¥0	¥(i)	- <u>@</u>	5 (£)	- <u>@</u>	-0	178	19	197
	76702	(4)	(E)	න <u>ව</u>	(3)	-@		£(I)			(4)	¥©	122/8	<u>ම</u> ලි	(2)	¥(0)	215	12	227
	195256	13/4 (17)	25/8 (7)	212/63 (6)	3/2	≨ ©	<u> </u>	V (0)			- ©	¥(0)	735/247 (6)	• <u>@</u>	¥(0)	- 0	1134	373	1507
	41803	109/ 7 4 (42)	51/13 (32)	% (0)	¥ (0)	¥ @		(19)			235/ 7 1 (14)	82/34 (20)	-0	166/70 (14)	2/2 (17)	-0	859	267	925
	25	¥(i)	X (0)	% (0)	¥ (0)	¥ 0		Y (0)			X (0)	¥ ©	¥(0)	X (0)	¥(0)	-0	0	0	0
Madhya Pradesh	296232	140/32 (4)	9/3 (4)	372/215 (3)	103/34	110/38		8/1 (4)			≨ ©	\$ 0	92/39 (3)	[E]	(2)	X (0)	870	376	1246
	296387	55/19 (4)	26/4 (4)	799/1 75 (5)	30/13	4/2 (7)		31/2			X (0)	¥ ©	(6)	84/10 (4)	-(3)	-0	1075	227	1302
	21448	13/10 (4)	X (0)	X (0)	-0	-0		¥ (0)			¥(0)	¥ ©	¥(0)	X (0)	-0	-0	13	10	23
	21594	∼ ⊕	≨ ©	% 0	≨ ©	16/5		- <u>@</u>			¥(0)	Y (0)	B(E)	≨ ©	¥(0)	¥(0)	31	5	36
	20289	NA (0)	NA (0)	NA (0)	(o)	(<u>0</u>)		NA (0)			N,A (0)	NA (0)	NA (0)	NA (0)	NA (0)	NA (0)	0	0	0
	15977	5/4 (12)	¥(0)	¥(6)	(G)	6/3 (1)		(E)			NA (0)	((0)	MA (0)	-©	- (i)	(i)	12	7	19
	148 798	320/46 (7)	52/12 (9)	\$ 0	32/5 (5)	17/1 (4)		(5)			31/5	38/1	421/60 (6)	-£	16/3 (3)	-©	973	137	1110
	499	4/ 7 (19)	- <u>@</u>	\$ 0	-e	≨ ©		¥ (0)			\$ 0	≨ ©	≨ ©	- @	¥(0)	-0	4	7	11
	49185	156/202 (5)	¥(0)	¥ 0	m(E)	¥ (0)		¥(0)			\$ (0)	\$ 0	¥(0)	X (0)	≨ (0)	- ()	159	202	361
	329784	341/295 (2)	-0	31/5	72/24	46/11 (2)		36/T. (3)			(3)	- <u>@</u>	79/13 (3)	54/16 (3)	- (E)	- ()	722	396	1118
	6885	-9	≨©	\$ 6	-©	-0		- <u>©</u>			≨ ©	2 0	\$ (0)	-©	≨ ©	- <u>©</u>	0	0	
	122501	141/74 (7)	10/1 (3)	\$ 0	40/38 (7)	(3)		(5) (5)			10 7 /104 (5)	576 (4)	26/61 (9)	226/296 (7)	3/4 (10)	-©	995	589	1155
	10036	4/2 (7)	A(0)	N(0)	24/ 7 (4)	(1)		(0) V			¥(0)	Y (0)	A(0)	A(0)	N. (0)	00)	32	6	41
	52224	36/94 (11)	≨ ©	% ©	(1) 5	- (G)		- <u>@</u>			¥(0)	¥ ©	-©	- <u>@</u>	-0	-©	39	94	133
	232162	762/247 (3)	¥6)	-£	(3)	ø(£)		¥©			£ 0	\$ 0	26 (2)	\$ 6	¥(0)	¥(0)	818	247	1065
	82104	281/355 (8)	100/60	3/3	,(£)	3/1 (9)		2 4)			¥(0)	¥(0)	50/1 (8)	<u>-0</u>	(5)	-0	468	420	888
	1	S16676638	205/1/2	1709/00/	550/053	252713	,	000	ľ					000		1000			

Table 9 : State wise & Aquifer wise distribution of Ground Water Exploratory Tube Wells/ Bore Wells

State Name	Alluvium	Laterite	Basalt	Sandstone	Shale	Limestone	Granite	Schist	Quartzite	Charnockite	Khondalite	BGC	Gneiss	Intrusives	Unclassified	Total
Andhra Pradesh	83	43	76	132	66	52	52	ĸ	18	40	63	789	71	0	0	1623
Arunachal Pradesh	16	ΝA	0	0	7	1	0	0	NA	NA	NA	NA	0	NA	0	24
Bihar	140	0	0	0	0	0	0	2	0	0	NA	19	2	0	0	163
Chandigarh	1	NA	NA	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΑN	1
Chhattisgarh	0	0	0	143	176	183	31	1	2	2	0	220	46	ß	AA	809
Dadra & Nagar Haveli	NA	NA	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΑN	14
Delhi	116	NA	NA	NA	NA	NA	NA	NA	6	NA	NA	NA	NA	NA	AA	125
Gujarat	527	-	523	63	10	23	72	58	14	NA	NA	NA	13	0	2	1255
Haryana	290	NA	NA	ю	NA	NA	NA	NA	2	NA	NA	NA	0	NA	ΑN	295
Himachal Pradesh	99	NA	NA	78	4	1	1	4	ю	NA	NA	0	0	0	ΑN	157
Jammu & Kashmir	214	NA	1	44	m	0	ß	2	NA	NA	NA	2	12	14	7	304
Jharkhand	33	-	6	9	0	-	7	18	ß	1	NA	211	Ŋ	1	AA	298
Karnataka	12	22	177	ю	NA	56	NA	66	NA	0	NA	566	0	NA	0	935
Kerala	8	32	NA	NA	NA	NA	2	13	2	86	52	0	103	1	0	393
Madhya Pradesh	259	2	345	29	88	6	ю	9	ю	NA	NA	क्र	2	0	NA	765
Maharashtra	431	11	1165	177	m	6	ю	22	0	NA	NA	0	76	0	0	1897
Meghalaya	6	NA	NA	NA	11	NA	0	NA	NA	NA	NA	т	NA	NA	NA A	23
Orissa	306	82	ΝΑ	52	10	NA	77	83	13	28	88	535	0	18	0	1186
Puducherry	1	0	NA	0	NA	NA	NA	NA	NA	NA	NA	NA	0	NA	0	1
Punjab	135	NA	NA	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN	0	142
Rajasthan	1202	1	99	146	63	4	99	48	32	0	1	98	¥	5	NA	1772
Tamil Nadu	296	32	NA	135	1	1	12	7	0	206	18	20	440	4	0	1222
Uttarakhand	61	NA	NA	œ	0	0	0	0	1	NA	NA	0	0	0	0	70
Uttar Pradesh	369	NA	0	0	0	0	NA	0	5	NA	NA	0	NA	AN	NA	374
West Bengal	326	79	1	13	0	1	1	10	0	NA	NA	32	0	NA	0	463
Grand Total	4995	30.6	2341	1077	422	341	237	448	109	375	172	2567	864	48	6	14311
Source: Central Ground Water Board;	ard; NA - Aquifer Not Available	vot Available														

oune: Central Ground Water Board; NA,Aquifer Not Availabk

Table 8 a: River Gauge and Discharge (G & D) Sites in Different Aquifers

SI No.	Aquifer Code	Aquifer Systems	Number of G & D Sites
1	AL	Alluvium	323
2	LT	Laterite	16
3	BS	Basalt	92
4	ST	Sandstone	49
5	SH	Shale	49
6	LS	Limestone	13
7	GR	Granite	7
8	sc	Schist	52
9	QZ	Quartzite	9
10	СК	Charnockite	19
11	кн	Khondalite	6
12	BG	BGC	101
13	GN	Gneiss	49
14	IN	Intrusives	6
		Total	791

Table 8 b: River Basin wise number of Gauge and Discharge Sites

SI No.	Basin Name	Number of G & D Sites
1	BHADAR	2
2	BHATSOL	27
3	BRAHMANI	25
4	BRAHMPUTRA	84
5	CAUVERY	32
6	CHAMBAL	20
7	CHENAB	10
8	GODAVARI	65
9	IMPHAL	3
10	JHELUM	8
11	KRISHNA	61
12	китсн	10
13	LOWER GANGA	107
14	LUNI	3
15	MAHANADI	36
16	МАНІ	13
17	NARMADA	20
18	PENNAR	20
19	PERIYAR	28
20	RAVI	1
21	SABARMATI	11
22	SURMA	39
23	SUTLEJ	1
24	TAPI	16
25	UPPER GANGA	89
26	VAIPPAR	6
27	VAMSADHARA	13
28	YAMUNA	41
	Total	791

Table 7: Aquifer distribution - River Basin wise

Total	58161.	19561	36460	54819	79800	186847	85448	130671	29921	66310	51438	301856	24472	137593	29225	265501	52829	246607	87385	133644	38699	93397	139882	54552	29659	13224	24995	50274	54441	63345	231125	38551	20787	203642	3165123
Unclassified						25532			51					28657			3281		790		70				2167		164				190				60903
Intrusives	44		ù	400	3994		456	109	099	32	22	4483	935	372	3914		45	680	171	2040	228	2	200	129		49	13		11	ση	735		43	107	19894
Gneiss	34	1691			343	5298	23354	9662	1945	29	œ	33782	178	1884	2670	1087	1561	4268	3214	3642	4191	1201	14278	13176			2165		1643		6405	14779	7316	749	158755
BGC	ന	367	ij	3461	25730	13429	36946	16630	2852	22	13	52474		8782	990	105421		48059		47048	4565	4589	44678	12019	936	4		2629	1123	213	5196	1229	14853	24230	478363
Khondalite					713		178	103				5618				1828			2	2699			261	4577							ij	1280	11656		32911
Charnockite					639		11248	211				8526				1767		199		5335			17189	16282							þ	7195	7769		76360
Quartzite	71	1678		737	4357	793		1926	96	183	11	1183				3582	Ŧ	1032	791	964	381	1313	7729	20		16	1832		1480		10107	29	20	6428	46905
Schist	17	2078		9192	12569	5020	1248	1921	11843	80	07	6404		4856	m	19226	459	6827	342	2575	8838	2917	13328	1609		4776	3362		4024		12224			5115	140935
Granite	986	1169	459	149	394	9494	898	1460	1518	302	46	15261		31849	3911	5604	1610	2667	8288	2633	749	2237	2631	80	1453	21.9	856	231	1038		815	291	181	753	196001
Limestone	929	130	3344	19	125	386	30	428	156	23	4	3544		11363		10083	946	2317	125	14822	568	727	5093	I		.27	222		4946	222	2504			1043	29869
Shale	3621	182	225		134	51429	162	14458	1943	1198	373	7007	15522	23103	3605	3377	2021	4905	4487	12943	355	3809	17152		1273	123		29386	2013		9966			1001	225390
Sandstone	14433	0209	219	268	2255	6744	2344	16543	6081	4901	640	26094	3882	14924	9928	4239	9189	28993	6621	19045	165	6243	3698	23	15445	1430	855	13262	3618	327	9437	2852	561	22599	260348
Basalt	H	ď.	26123	31407	46	1397	287	47144				128409		5611	295	98370	15114	7482	14371	323	11403	53074	929	711			1385			47642			28	20318	512237
Laterite	0	·T·	x	6434	6248		454	259				3597				2125	52	13535		970	25	1152	1546	2340						25	11	1440	487	214	40915
Alluvium	38277	6236	6084	2753	22253	67325	7772	21485	2775	59611	50254	5475	3956	6191	4934	8792	20921	125643	47885	14608	2060	16264	11170	3536	8382	6122	14140	4766	34493	14908	1,73534	9458	7843	111469	946379
Basin Name	Barmer	Beas	Bhadar	Bhatsol	Brahmani	Brahmaputra	Cauvery	Chambal	Chenab	Churu	Ghaghar	Godavari	lmphal	snpul	helum	Krishna	Kutch	Lower Ganga	Luni	Mahanadi	Mahi	Narmada	Pennar	Periyar	Qura-Qush	Ravi	Sabarmati	Surma	Sutlej	Tapi	Upper Ganga	Vaippar	Vamsadhara	Yamuna	Total

Table 5 : Parliamentary Constituencies of India

			Number of	Constituency
Sl. No.	Name of the State	Area (Sq. Km)	Parliament	Legislative Assembly
1	Andhra Pradesh	275069	42	294
2	Arunachal Pradesh	83743	2	60
3	Assam	78438	14	126
4	Bihar	94163	40	243
5	Chhattisgarh	136034	11	90
6	Goa	3702	2	40
7	Gujarat	196024	26	182
8	Haryana	44212	10	90
9	Himachal Pradesh	55673	4	68
10	Jammu & Kashmir	222236	6	89
11	Jharkhand	79714	14	81
12	Karnataka	191791	28	224
13	Kerala	38863	20	140
14	Madhya Pradesh	308144	29	230
15	Maharashtra	307713	48	288
16	Manipur	22327	2	60
17	Meghalaya	22429	2	60
18	Mizoram	21081	1	40
19	Nagaland	16579	1	60
20	Orissa	155707	21	147
21	Punjab	50362	13	117
22	Rajasthan	342240	25	200
23	Sikkim	7096	1	32
24	Tamil Nadu	130058	39	234
25	Tripura	10493	2	60
26	Uttar Pradesh	240928	80	403
27	Uttarakhand	53484	5	70
28	West Bengal	88752	42	294
29	Andaman & Nicobar Islands	8249	1	-
30	Chandigarh	114	1	-
31	Dadra & Nagar Haveli	491	1	-
32	Daman & Diu	112	1	-
33	Delhi	1483	7	70
34	Lakshadweep	32	1	-
35	Puducherry	479	1	5
	Total	3288015	543	4097

Table 4: Aquifer Systems of India

	Princip	tal Aquifer Systems		AquiferCh	naractéristics			Major Aquifers	Area Covered (Sq. km)	Age
,No	Code	Name	DTW - Decadal Average (m bgl)	Thickness of Aquifer */ \tilde{V}eathered Zone (m)	Granular/ Fracture Zones Encountered (m bgl)	Yield (m²/ day)	Code	Name		(As per Geological time scale)
1				And.			ALU1	Younger Alluvium (Clay/Silt/Sand/ Cal- careous concretions)	339298	Quartemary
2.							ALU2	Pebble / Gravel / Bazada / Kandi	5203	Quartemary
						1	AL03	Older Allovium (Silt/Sand/Gravel/ Lithomargic clay)	407490	Quartemary
	AL	Alluvium (945753 s q km) (29.82%)	2-40	Upta 700 *	30-1000	10-6500	ALO4	Aeolian Alluvium (Silt/Sand)	149208	Quartemary
							AL05	Coastal Alluvium (Sand/Silt/Clay)	40661	Quartemary
							AL06	Valley Filb	3864	Quartemary
							ALU7	Gladal Deposits	31	Quartemary
	LT	Laterité (40925s q km) (1,29%)	5-20	5 - 40 *	10/30	5-6000	LT01	Laterite / Ferrugirious concretions	40926	Quartemary
		Basalt	0.7.0	-	Personal I	ww.	BS 01	Basic Rocks (Basalt)	512290	Mesazaicta Cenazaic
1	BS	(512302 s q km) (16.15 %)	5-20	5-60	30 - 280	1-480	ES.0.2	Ultra Basic	12	Mesazaicta Cenazaic
							ST01	Sandstone/Conglomerate	50026	Upper Palaenznicto Cenozoic
							ST02	Sandstone with Shale	75355	Upper Palaeozoic to Cenozoic
	sī	Sandstone (250415 sakm)	2-40	20-600*	20-160	5-3700	ST03	Sandstone with shale/coal beds	37720	Upper Palaeozoicto Cenozoic
ī	OI.	(260415 s q km) (8.21%)	2790	28-555	20-200	3-3700	STQ4	Sandstone with Clay	21540	Upper Palaeozojcto Cenozojc
							ST05	Sandstone/Conglomerate	56354	Proterozoicto Cenazaic
							STOR	Sandstone with Shale	19420	Proterozoicto Cenazaic
							SH01	Shale with limestone	3784	Upper Palaeozoicto Cenozoic
						1	SH02	Shale with Sandstone	87771	Upper Palaeozoicto Cenozoic
10	SH	Shale (225397sq km)	5-40	40-250 *	20-150	8-2900	SHD3	Shale, limestone and sandstone	45539	Upper Palaeozgicto Cenozoic
	эп	(7.11%)	5-40	40-250	26-150	0-2300	SH04	Shale	5938	UpperPalaeozoicto Cenozoic
							SH05	Shale/Shale with Sandstone	64265	Proterozoicto Cenozoic
2							SH06	Shale with Limestone	18100	Protemzaicta Cenazaic
							LS01	Milialitic Limes tone	2946	Quartemary
į.		Name of the last o					LS02	Limestone / Dalamite	19747	Upper Palaeozoic to Cenozoic
	LS	Limestone (62898s q km) (1.98%)	5-40	8-451 *	20-190	4-2100	LS03	Limestone/Dalamite	34708	Proterozaic
5							LS04	Limestone with Shale	5499	Proterozoic
							LS05	Marble	995	Azaicta Praterazaic
3	**	Granite	430	8.00	1000	20.4400	GR01	Acidic Rocks (Granite,Syenite, Rhyolite etc.)	133	Mes azaicta Cenazaic
	GR	(100991 s q km) (3,18%)	5-40	5-40	15-200	10-1440	GR02	Acidic Rocks (Pegmatite, Granite, Sye- nite, Rhyolite etc.)	100858	Proterozoic to Cenazoic
		A14.4				-	SC01	Schist	93026	Azaicta Proterozaic
	sc	Schist (140934.90 s q km)	5-20	5-72	10-180	3-550	SC02	Phyllite	31589	Azoicto Proterozoic
2		(4.4496)					SC03	Slate	16321	Azaicta Praterazaic
,		Quartzite		- 1	To a la		0201	Quartzite	20830	Protemzoicto Cenazaic
1	QZ	(46904s q km) (1.48%)	5-40	8-30	15-150	2-400	0202	Quartzite	26074	Azaicta Proterozaic
	СК	Charnockite (76359 s q km) (2.41%)	2-40	5-45	15-291	1-3000	CK01	Charnockite	76360	Aznic
	кн	Khondelite (32913 sq km) (1.04%)	5-10	5-20	4,0-291	20-1500	KH01	Khandalites, Granulites	32914	Aznic
,	BG	Banded Gnessic Complex (478382 s q km)	5-20	5-100	30-200	2 - 3600	BG01	Banded Gnebsic Complex (BGC)	478383	Aznic
3		(15.09%)					GN01	Undifferentiated metas edimentaries/ Undifferentiated metamorphic	59260	Azpicto Proterozoic
,	GN	Gneiss (158753 s q km) (5.01%)	5-15	3-25	20-200	10-2500	GN02	Gnebs	43266	Azaicta Praterozaic
1							GN03	Migmatitic Gness	56228	Azaic
1	(6)	Intrusive	* **	9.55	40.000	1 = 200	IN01	Basic Rocks (Dolerite, Anorthosite etc.)	11167	Proterozaic to Cenozaic
2	IN	(19895s g km) (0.63%)	5-20	6-13	12-150	LowYield	INU2	Ulrta Basics (Epidiorite, Granophyre etc.)	8729	Proterozoic to Cenozoic

Table 3: State wise Distribution of Principal Aquifer Systems

			and control to	1	- III I MANAGEME	Silvania	Sinsi	Quantille	Charmockite	- Marketine	358	Greiss	Intribines	Unclassified	Total Area
	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)	Area (%)	
	- (e)	-ê	- 0	-©	p (0)	a (i)	o (6)	-6	90	o (i)	a (d)	(a)	a(b)	6701 (100)	1078
	1761 (0.66)	9066	20164 (7.52)	22262 (8.3)	10481	13597 (5.07)	13492 (5.03)	11354 (4.24)	11238 (4.19)	12100 (4.51)	110284 (41.13)	12075 (4.5)	108 (0.04)	-0	268105
	-(i)	1397 (1.76)	71 (0.09)	35562 (44.83)	297 (0.37)	8672 (10.93)	2872 (3.62)	-©	•€	-G	-6	1880 (2.37)	-(a)	24093 (30.37)	79894
	- (ĝ	(O)	5590 (7.4)	4557 (6.03)	(O)	o()	(0)	717 (0.95)	-(i)	-(i).	7642 (10.11)	(g)	- (0)	1 (0)	\$1257
	20 (0.02)	34 (0.04)	2504 (2.76)	m©	82 (0.09)	518 (0.57)	254 (0.28)	257 (0.28)	m(i)	- 0	4214 (4.65)	839 (0.93)	18 (0.02)	(a)	80206
	- (0)	- @	= <u>0</u>	-0	40	a (i)	B(B)	-©	□©	-©	a <u>6</u>	a <u>@</u>	a(i)	a (i)	1115
	1912 (1.46)	836 (0.64)	28052 (21.43)	14781 (11.29)	15255 (11.65)	4140 (3.16)	1532 (1.17)	547 (0.42)	1370 (1.05)	385 (0.29)	37756 (28.84)	19860 (15.17)	4352 (3.32)	o(g)	130908
	o(i)	477 100	= @	= @	= @	o()	o()	o@	0 0	o (i)	a <u>@</u>	o(i)	= ()	D (O)	477
	o <u>@</u>	53 65.57	-(i)	-0	-(i)	o()	06	-©	(O)	- 0	0 ()	o()	66	28 (34.43)	156
	- @	o (B)	- @	= <u>@</u>	- (3)	= <u>@</u>	□(<u>0</u>	137	0 0	a (0)	= (0)	= (0)	□ (£)	o (0)	1455
	1573 (44.26)	35 (0,98)	270 (7,59)	= 0	= @	18 (0.52)	890 (25,d5)	= ©	90	ϩ	323 (9.09)	-ê	402 (11,32)	9 6	3328
	52 (0.03)	74297 (42.32)	10192 (5.81)	5632 (3.21)	4778 (2.72)	2501 (1.42)	8439 (4.81)	977 (0.56)	- (c)	□©	-6	1259 (0.72)	(0.03)	4935 (2.81)	175950
-	a(b)	-©	590 (1.38)	-0	-©	-6	o(i)	342 (0.8)	-ĝ	-g	-6	(0.01)	-(a)	- 6	42769
	-©	- 0	10514 (19.26)	2932 (5.37)	6407 (11.73)	2719 (4.98)	17926 (32.83)	4638 (8.49)	-©	a (0)	3534 (6.47)	4063 (7.44)	(0.11)	(p)	52.536 52.536
	-6	6173 (2.79)	46030 (20.78)	30117	10399 (4.7)	39111 (17,66)	12106 (5.47)	- ©	• <u>©</u>	- ©	11709 (5.29)	6124 (2.77)	4945 (2,23)	30932 (13.97)	221487
	743 (0.97)	3092 (4,03)	4220 (5.5)	- @	503 (0,66)	1786 (2.33)	10002 (13.04)	1488 (1,94)	196 (0.26)	-©	46174 (60.2)	2115 (2,76)	655 (0.85)	uĝ.	76702
	3628 (1.86)	34892 (17.87)	721 (0.37)	-G	5872 (3,01)	□ (j)	28458 (14.57)	-0	6024 (3.09)	-©	114943 (58.87)	0 (0)	- 0	15 (0.01)	195256
1	1454 (3.48)	-G	- 0	= 0	n()	188 (0.45)	419 (1)	(0.17)	18756 (44.87)	4223 (10.1)	1398 (3.35)	11980 (28,66)	167 (0.4)	(0,01)	41903
	o <u>()</u>	- (i)	- <u>(</u>)	- <u>(</u>)	-(i)	o()	00)	-©	(0)	o()	- 6	o()	= <u>(</u>)	25 (100)	25
	2141 (0.72)	135433 (45.72)	52036 (17.57)	25670 (8.67)	4712 (1.59)	1615 (0.55)	6447 (2.18)	2015 (0.68)	a (0)	0 (0)	30253 (10.21)	699 (0.24)	401 (0.14)	9 9	238832
14097 (4.76)	5516 (1.86)	235903 (79,59)	7316 (2,47)	588 (0.2)	1563 (0.53)	7618 (2.57)	5530 (1.87)	767 (0.26)	p (b)	o (b)	262 (0.09)	16576 (5.59)	,549 (0,22)	H)	236387
	= @	o <u>()</u>	5237 (24.42)	11952 (55.73)	-(E)	- 0	o()	o <u>@</u>	00	-0	- 6	- 6	303 (1.41)	(a)	21448
7 1	- (i)	o (o)	0 (0)	12370 (57.28)	0 (0)	1018 (4.71)	(a)	o (i)	(D)	a (0)	7204 (33.36)	o (i)	- (a)	(p)	21594
	- (i)	o (i)	3138 (15.47)	17150 (84.53)	D (D)	(a)	(a)	o()	0)	(a)	a(j)	(e) 0	- (c)	0 (D)	20288
	- @	a (i)	3906 (24.45)	10722 (67.11)	- (6)	- @	o (j	o@	o ()	o (c)	- (5)	178 (1.11)	632 (3.95)	(0.02)	15977
	5305 (3.57)	90	4991 (3.35)	2923 (1.96)	a ĝ	1259 (0.85)	4845 (3.26)	4051 (2.72)	13689 (9.2)	14092 (9.47)	54951 (36.93)	109 (0.07)	4870 (3.27)	¤ĝ	148798
	(1.63)	D (0)	28 (5.58)	p (6)	(0)	(D)	(g)	0 (0)	(p) D	(D)	(0)	4 (0.84)	(D)	37 (7.4)	499
	(D)	(0)	738 (1.5)	(0)	(0)	(0)	(p)	0 0	(o) 0	0 0	0 (0)	(p) D	(O)	(0)	49185
	115 (0.03)	9798 (2,97)	35240 (10.69)	16902 (5.13)	818 (0.25)	13208 (4.01)	7272 (2,21)	6456 (1,96)	211 (0)	105 (0.03)	21506 (6,52)	18897 (5.73)	726 (0.22)	(D)	329784
	(0)	(D)	97 (1.41)	130 (1.89)	(0.06)	36 (0.52)	1661 (24.13)	(1.11)	(0)	(0)	(0)	3419 (49.66)	(p)	1442 (20.95)	5885
	2417 (1.97)	(D)	8487 (6.93)	251 (0.2)	64 (0.05)	1399 (1.14)	403 (0.33)	29 (0,02)	248 7 2 (20,3)	2009 (1.64)	7038 (5.75)	52126 (42,55)	511 (0.42)	(p) p	122901
602 (6)	a <u>(</u>)	a (j	5539 (55.19)	3895 (38.81)	g)	(<u>0</u>)	(a)	-(e)	(D)	0 0	- <u>6</u>	(a)	a(i)	(b) 0	100€
	- 00	o()	2872 (5.5)	4264 (8.17)	1579 (3.02)	1168 (2.27)	14168 (27.13)	7594 (14.54)	o (i)	g (D)	(65.8) (9.59)	6432 (12.32)	735 (1.41)	190 (0,36)	\$2529
	o()	572 (0,25)	1122 (0.48)	2430 (1,05)	¤(i)	- (i)	1453 (0.63)	5378 (2,32)	p(j)	a@	9283	-(e)	a@	0 (6)	292252
	14280 (17.39)	244 (0.3)	736 (0.9)	304 (0.39)	84 (0.1)	(0.49)	2768 (3.37)	7 (Q)	(O)	90	4893 (5.96)	99 (0.12)	311 (0.38)	(0)	82104
	40926	512302	260416	225397	62899	100992	140985	46904	26360	32914	478383	158753	198%	58407	2171100

Area in Sq. 8m (96 in respect to the total area of the State)

Table 2: River Basins of India

_		Arı	ea ea		
SI. No	Name of the Basin	Sq. Km.	% of area	No. of Sub-Basin	No. of Watersheds
1	Barmer	58161	1.84	1	1
2	Beas	19561	0.62	1	24
3	Bhadar	36460	1.15	2	38
4	Bhatsol	54819	1.73	2	67
5	Brahmani	79800	2.52	3	104
6	Brahmaputra	186847	5.90	2	278
7	Cauvery	85448	2.70	3	87
8	Chambal	130671	4.13	4	160
9	Chenab	29921	0.95	1	49
10	Churu	66310	2.10	1	1
11	Ghaghar	51438	1.63	2	11
12	Godavari	301856	9.54	8	282
13	Imphal	24472	0.77	2	53
14	Indus	137593	4.35	4	157
15	Jhelum	29225	0.92	1	51
16	Krishna	265501	8.39	7	260
17	Kutch	52829	1.67	2	47
18	Lower Ganga	246607	7.79	4	382
19	Luni	87385	2.76	2	47
20	Mahanadi	133644	4.22	3	116
21	Mahi	38699	1.22	2	40
22	Narmada	93397	2.95	3	163
23	Pennar	139882	4.42	4	125
24	Periyar	54552	1.72	3	55
25	Qura-Qush	29659	0.94	2	27
26	Ravi	13224	0.42	1	15
27	Sabarmati	24995	0.79	2	25
28	Surma	50274	1.59	3	104
29	Sutlej	54441	1.72	2	39
30	Тарі	63345	2.00	3	59
31	Upper Ganga	231125	7.30	7	230
32	Vaippar	38551	1.22	2	38
33	Vamsadhara	50787	1.60	2	38
34	Yamuna	203642	6.43	3	275
	Total	3165123		94	3448

Table 1: Administrative Divisions of India

				A	dministratíve Units	•
SI. No.	Name of the State	Area (Sq. Km)			No. o	f Villages
			No. of Districts	Total	Inhabited	Uninhabited
1	Andhra Pradesh	275069	23	28,123	26,613	1,510
2	Arunachal Pradesh	83743	16	4,065	3,863	202
3	Assam	78438	27	26,312	25,124	1,188
4	Bihar	94163	38	45,098	39,015	6,083
5	Chhattisgarh	136034	27	20,308	19,744	564
6	Goa	3702	2	359	347	12
7	Gujarat	196024	26	18,539	18,066	473
8	Haryana	44212	21	6,955	6,764	191
9	Himachal Pradesh	55673	12	20,118	17,495	2,623
10	Jammu & Kashmir	222236	22	6,652	6,417	235
11	Jharkhand	79714	24	32,615	29,354	3,261
12	Karnataka	191791	30	29,406	27,481	1,925
13	Kerala	38863	14	1,364	1,364	0
14	Madhya Pradesh	308144	50	55,393	52,117	3,276
15	Maharashtra	307713	35	43,711	41,095	2,616
16	Manipur	22327	9	2,391	2,315	76
17	Meghalaya	22429	7	6,034	5,782	252
18	Mizoram	21081	8	817	707	110
19	Nagaland	16579	11	1,317	1,278	39
20	Orissa	155707	30	51,349	47,529	3,820
21	Punjab	50362	20	12,673	12,278	395
22	Rajasthan	342240	33	41,352	39,752	1,600
23	Sikkim	7096	4	452	450	2
24	Tamil Nadu	130058	32	16,317	15,400	917
25	Tripura	10493	œ	870	858	12
26	Uttar Pradesh	240928	75	16,826	15,761	1,065
27	Uttarakhand	53484	13	107,452	97,942	9,510
28	West Bengal	88 75 2	19	40,783	37,945	2,838
29	Andaman & Nicobar Islands	8249	3	547	501	46
30	Chandigarh	114	1	24	23	1
31	Dadra & Nagar Haveli	491	1	70	70	О
32	Daman & Diu	112	2	23	23	О
33	Delhi	1483	9	165	158	7
34	Lakshadweep	32	1	24	8	16
35	Puducherry	479	4	92	92	0
	Total	3288015	657	638596	593731	44865

ed, analysed and integrated to define the extent and characteristics of aquifer systems.

CGWB is mandated to carry out hydrogeological mapping aided with ground water exploration, geophysical surveys, evaluation of aquifer parameters, ground water resource estimation and ground water regime monitoring. Over the years, CGWB through its studies has created huge database in the form of water levels, water quality, sub-surface lithological & geophysical logs and aquifer parameters. Analysis of the data base has enabled the preparation of hydrogeological maps including the ground water management plans where the aquifer wise area suitable for ground water recharge, development and conservation have been identified.

The present endeavour is an effort of aquifer mapping on 1:250,000 scale by integrating the geological and hydrogeological data of CGWB & GSI respectively and various other ground water related thematic data / information from other Agencies. This includes preparation of paper maps showing the major aquifer systems on 1:250,000 scale for the entire country.

In order to carry out the present exercise, all the data generated by CGWB along with data collected from different agencies is integrated in GIS platform. The outputs are depicted as thematic layers with location of ground water observation wells, exploratory wells, ground water quality hot spots in terms of high incidence of geogenic contaminants, stage of ground water development etc. in different maps. Detailed accounts of the aquifer types, their characteristics and spatial extents are given in the succeeding sections. Attempt has also been made to delineate aquifer wise areas suitable for conservation, recharge as well as exploitation of ground water.

Based on the hydrogeological characteristics, the entire country has been classified into 14 Principal Aquifer Systems and 42 major aguifers. Alluvium is the major aguifer system which covers maximum area of around 31% of the entire country and available in Uttar Pradesh, Bihar, West Bengal, Assam, Odisha and Rajasthan. The sandstone aguifer covers around 8% area in the country and available in Chhattisgarh, Andhra Pradesh, Madhya Pradesh, Gujarat, Karnataka and Rajasthan. The rest of the country is covered with the other formations that cover around 60% of the area. Among these, Basalt aquifer covers maximum of around 17% area of the country and mainly spread over Maharashtra, Madhya Pradesh, Gujarat, Rajasthan and Karnataka. Shale aguifer accounts for around 7% of area in the country and is available mostly in Chhattisgarh, Andhra Pradesh, Madhya Pradesh, Rajasthan and in the north-eastern states as well as in the Himalayan terrain. Limestone aguifer covers a very small area of around 2% in the country and mainly available in the states of Chhattisgarh, Andhra Pradesh, Karnataka, and Gujarat and in the Himalayan states. Around 20% of the area of the country is covered by Banded Gneissic Complex (BGC) and Gneiss aquifers which are available almost in all the peninsular states as well as the Himala-yan states. The rest 15% of the entire area is covered by aquifers namely; Schist, Granite, Quartzite, Charnockite, Khondalite, Laterites and Intrusive.

An attempt has been made to prioritize areas based on the sustainability and quality related ground water issues and presented in the atlas. Various ground water management strategies have also been suggested.

Central Ground Water Board, Ministry of Water Resources is contemplating National Aquifer Mapping Programme at 1:50,000 or larger scales during XII and XIII Plan periods. This ambitious venture will involve compilation and synthesis of all relevant data collected by CGWB and various other agencies, to identify existing data gaps, creation of additional data through suitable investigations and finally, to bring out comprehensive aquifer maps along with their ground water potential as well as realistic and scientific management plans to ensure long-term sustainability.

The present compilation will form abase for National Aquifer Mapping Programme as an overview of the aquifer systems in the country. Further downscaling can be taken up based on the regional understanding of the aquifers presented in the atlas.

AQUIFER SYETEMS OF INDIA

PREAMBLE

Water is the median for development of civilizations all over the world and plays vital role in socio- economic development. Ground water is the most preferred resource to meet various requirements and is the Nation's principal reserve of fresh water. India is largest user of ground water and irrigates about 39 Million Ha of land through ground water irrigation followed by China and USA. It is estimated that more than 90% of the rural and more than 50% of urban water supply is being met by ground water. As per the latest well census, the number of ground water abstraction structures have increased to about 21 million in last two decades with an estimated annual ground water withdrawal of about 221 Billion Cubic Meter (BCM).

Rapid developments in the water resources sector have been taking place in the country in the last few decades, resulting in various undesirable environmental impacts. The drying up of a large number of bore wells in some areas due to declining groundwater levels have had a direct impact on water supply for irrigation, industrial and domestic needs in India. Demands for safe drinking water and requirements to maintain healthy ecosystems are increasing, and complex social and scientific questions have arisen about how to assess and manage ground water resources.

The sustainability of ground water sources are jeopardised due to various reasons, concerns about ground water resources involve questions about depletion of ground water levels, reductions in resources, sustainability of wells, potential loss of ground water-dependent ecosystems, land subsidence, saltwater intrusion, and changes in ground water quality etc. In order to evolve the remedies for such issues understanding of the system in which ground water is contained and its relationship with the surrounding ecosystem is very essential. The understanding of occurrence and distribution of ground water in time and space essentially requires an establishing the lateral and vertical extent of aquifer systems along with their characterization. In view of this, an exercise of aquifer mapping has been carried out by CGWB by collating the existing data on ground water and related themes and bringing them into common GIS platform

The atlas entitled "Aquifer Systems of India" provides a country wide overview and summary of the most important information available for each principal and major aquifer systems...It is an outcome of the extensive hydrogeological studies carried out by Central Ground Water Board (CGWB) includ-

ing exploratory drilling, geophysical, hydro-chemical, hydro-logical investigations etc. since its inception..

PURPOSE

- To define the extent of principal and major aquifer systems
 of India with their characterisation on regional scale and depict aquifer wise ground water scenario along with major issues and challenges which needs immediate attention for
 sustainable management of ground water resources.
- Creating a baseline data in GIS platform for initiating National Aquifer Mapping Programme and demarcating priority areas for aquifer wise management of ground water resources on scientific and sustainable basis.

The Atlas describes the location, extent, aquifer characteristics of all the important aquifers in the country, including those not studied by CGWB. The purpose of the atlas of "Aquifer Systems of India" is to summarize the ground water data in one publication through a common format illustrating the important ground-water related information that has been collected over many years by the CGWB.

The Atlas has been prepared keeping in view the utilities and user friendliness in understanding by the nonprofessional as well as professional Hydrogeologist. Simple presentation of tables is used to explain aquifer wise ground water scenario in the country. Attempt has been made to represent the correlations of various thematic layers such as climate, topographic, and geologic settings on the occurrence, movement, and chemical quality of ground water in map forms. The Atlas will be of immense use for Regional and National ground-water resources planning by the Policy makers and anyone who needs to understand ground-water scenario in the country. This atlas will be very handy tool for academia at the institution level and as an overview of ground-water conditions for stakeholders who need aquifer specific information.

AQUIFER MAPPING

Aquifer mapping is a multidisciplinary scientific process wherein a combination of geological, hydrogeological, geophysical, hydrological, and quality data are integrated to characterize the quantity, quality and movement of ground water in aquifers. The Geological formations mapped by Geological Survey of India (GSI) are forming different aquifers based on their origin, sedimentation history and hydrogeological characteristics. Hydrogeological information collected by CGWB through its survey, investigations and exploration were collat-

Number	Sections	Page No
Table 31	State wise Distribution & Characteristics of Intrusives	<i>7</i> 5
Table 32	State wise & Aquifer Wise Annual Replenishable Recharge	77
Table 33	State wise Area Prioritized for Artificial Recharge	79
Table 34	Area Delineated for Water Conservation and Harvesting	81
Table 35	Area Suitable for Ground Water Development	83
Table 36	Aquifer Wise Ground Water Management Plan	89
	WAY FORWARD	91

Number	Sections	Page No
Plate XLII	Laterite- Aquifer System	74
Plate XLIII	Intrusives	76
Plate XLIV	Annual Replenishable Recharge	78
Plate XLV	Artificial Recharge Priority Area (Aquifer Management Plan)	80
Plate XLVI	Water Conservation And Harvesting- Priority Area (Aquifer Management Plan)	82
Plate XLVII	Suitable Area For Ground Water Development (Aquifer Management Plan)	84
Plate XLVIII	Aquifer Management Plan – Western Indo Gangetic Alluvium Aquifer	85
Plate XLIX	Aquifer Management Plan – Basaltic Aquifer	86
Plate L	Aquifer Management Plan – Banded Gneissic Complex	87
Plate LI	Aquifer Management Plan – Gneiss Aquifer	88
Plate LII	Priority Area for Aquifer Mapping	90
	LIST OF TABLES	
Table 1	Administrative Divisions of India	3
Table 2	River Basins of India	5
Table 3	State wise Distribution of Principal Aquifer Systems	7
Table 4	Aquifer Systems of India	9
Table 5	Parliamentary Constituencies of India	11
Table 6	Population Census - India	13
Table 7	Aquifer Distribution - River Basin wise	15
Table 8a	Number of Gauge and Discharge Sites In Different Aquifers	17
Table 8b	River Basin wise number of Gauge and Discharge Sites	17
Table 9	State wise and Aquifer Wise distribution of Ground Water Exploratory Tube Wells/ Bore Wells	19
Table 10	State wise and Aquifer Wise distribution of GW Observation Wells (Dug Well/ Piezometers) - Number of wells per Toposheet (Wells/720 sq km)	21
Table 11	State wise Pre-Monsoon Depth To Water Level (Decadal Mean, 2002-2011)	25
Table 12	State Wise Post Monsoon Depth To Water Level (Decadal Mean, 2002-2011)	27
Table 13	Districts Showing Salinity in Ground Water in Different States of India	31
Table 14	Districts Showing Fluoride in Ground Water in Different States of India	33
Table 15	Districts Showing Nitrate in Ground Water in Different States of India	35
Table 16	Districts Showing Arsenic in Ground Water in Different States of India	37
Table 17 a	Aquifer wise Area Under Over Exploited Blocks	39
Table 17 b	Aquifer wise Area Under Critical Blocks	39
Table 18	State wise Distribution & Characteristics of Alluvium Aquifer System	41
Table 19	State wise Distribution & Characteristics of Basalt Aquifer System	45
Table 20	State wise Distribution & Characteristics of Banded Gneissic Complex (BGC) Aquifer System	49
Table 21	State wise Distribution & Characteristics of Gneiss Aquifer System	53
Table 22	State wise Distribution & Characteristics of Sandstone Aquifer System	57
Table 23	State wise Distribution & Characteristics of Shale Aquifer System	59
Table 24	State wise Distribution & Characteristics of Limestone Aquifer System	61
Table 25	State wise Distribution & Characteristics of Granite Aquifer System	63
Table 26	State wise Distribution & Characteristics of Schist Aquifer System	65
Table 27	State wise Distribution & Characteristics of Quartzite Aquifer System	67
Table 28	State wise Distribution & Characteristics of Charnockite Aquifer System	69
Table 29	State wise Distribution & Characteristics of Khondalite Aquifer System	71
Table 30	State wise Distribution & Characteristics of Laterite Aquifer System	73

AQUIFER SYSTEMS OF INDIA

Contents

Num ber	Sections	Page No
	INTRODUCTION	1-2
	LIST OF PLATES	
PlateI	Administrative Divisions	4
PlateII	River Basins	6
PlateIII	Principal Aquifer Systems	8
Plate IV	Major Aquifers	10
Plate V	Parliamentary Constituencies	12
Plate VI	Population Density	14
Plate VII	Aquifers - River Basin wise	16
Plate VIII	River Gauge And Discharge Sites	18
PlateIX	Groundwater Exploratory Wells	20
Plate X	Groundwater Observation Wells	22
Plate XI	Depth To Water Level (Pre-Monsoon, 2011)	23
Plate XII	Depth To Water Level (Post-Monsoon, 2011)	24
Plate XIII	Depth To Water Level (Pre-Monsoon Decadal Mean, 2002-2011)	26
Plate XIV	Depth To Water Level (Post-Monsoon Decadal Mean, 2002-2011)	28
Plate XV	Water Table Elevation	29
Plate XVI	Yield Potential	30
Plate XVII	Electrical Conductivity (Shallow Aquifer)	32
Plate XVIII	Fluori de (Shallow Aquifer)	34
Plate XIX	Nitrate (Shallow Aquifer)	36
Plate XX	Arsenic (Shallow Aquifer)	38
Plate XXI	Categorization of Ground Water Assessment (2009)	40
Plate XXII	Alluvium -Aquifer System	42
Plate XXIII	Alluvium Aquifer (Parts of Western Indo- Gangetic Plain)	43
Plate XXIV	Alluvium Aquifer (Parts of Eastern Ganga-Brahmaputra Plain)	44
Plate XXV	Basalt - Aquifer System	46
Plate XXVI	Basalt Aquifer (Parts of Gujarat)	47
Plate XXVII	Basalt Aquifer (Parts of Maharashtra and Madhya Pradesh)	48
Plate XXVIII	Banded Gneissic Complex	50
Plate XXIX	Banded Gneissic Complex (Parts of UP, MP, Bihar, Chhattisgarh, Orissa and Andhra Pradesh)	51
Plate XXX	Banded Gneissic Complex (Parts of Karnataka, Tamil Nadu and Andhra Pradesh)	52
Plate XXXI	Gneiss - Aquifer System	54
Plate XXXII	Gneiss Aquifer (Parts of Madhya Pradesh, Maharashtra, Chhattisgarh and Andhra Pradesh)	55
Plate XXXIII	Gneiss Aquifer (Parts of Kerala and Tamil Nadu)	56
Plate XXXIV	Sandstone- Aquifer System	58
Plate XXXV	Shale - Aquifer System	60
Plate XXXVI	Limestone - Aquifer System	62
Plate XXXVII	Granite- Aquifer System	64
Plate XXXVIII	Schist - Aquifer System	66
Plate XXXIX	Quartzite- Aquifer System	68
Plate XL	Charnockite - Aquifer System	70
Plate XLI	Khondalite - Aquifer System	72

Foreword Messages Secretary Water Resources

Messages Minister of State

Messages Minister Water Resources

AQUIFER MANAGEMENT PLAN (PARTS OF KERALA AND TAMIL NADU - GNEISS AQUIFER)

MANAGEMENT PLAN

Area Suitable for Development

Area Suitable for Development with recharge measures

Area prioritised for Artificial Recharge

Area Suitable for Water Conservation

Central Ground Water Board Ministry of Water Resources Government of India

LEGEND

AQUIFERS

Isohyete

PLATE - L AQUIFER SYSTEMS OF INDIA

Central Ground Water Board Ministry of Water Resources

Government of India

AQUIFER MANAGEMENT PLAN

(PARTS OF KARNATAKA, TAMIL NADU AND ANDHRA PRADESH - BGC)

AQUIFER MANAGEMENT PLAN

(PARTS OF MAHARASHTRA AND MADHYA PRADESH - BASALT AQUIFER)

Central Ground Water Board Ministry of Water Resources Government of India

LEGEND

MANAGEMENT PLAN
AQU

Area Prioritised for Artificial Recharge

Area Suitable for Development with Recharge Measures

Area Suitable for Development

Area Suitable for Water Conservation

State CapitalState Boundary

PLATE - XLVIII AQUIFER SYSTEMS OF INDIA

AQUIFER MANAGEMENT PLAN

W E

(WESTERN INDO-GANGETIC ALLUVIUM AQUIFER)

PLATE - XXXIII AQUIFER SYSTEMS OF INDIA

GNEISS AQUIFER (PARTS OF KERALA AND TAMIL NADU)

PLATE - XXXII AQUIFER SYSTEMS OF INDIA

GNEISS AQUIFER

(PARTS OF M.P., MAHARASHTRA, CHHATTISGARH AND ANDHRA PRADESH)

PLATE - XXX AQUIFER SYSTEMS OF INDIA

Government of India

BANDED GNEISSIC COMPLEX

(PARTS OF KARNATAKA, TAMIL NADU AND ANDHRA PRADESH)

PLATE - XXIX AQUIFER SYSTEMS OF INDIA

Government of India

BANDED GNEISSIC COMPLEX

(PARTS OF U.P, M.P, BIHAR, CHHATTISGARH, ORISSA AND ANDHRA PRADESH)

BASALT AQUIFER

(PARTS OF MAHARASTRA AND MADHYA PRADESH)

PLATE - XXVI

Government of India

BASALT AQUIFER

(PARTS OF GUJARAT)

PLATE - XXIV AQUIFER SYSTEMS OF INDIA

ALLUVIUM AQUIFER

(PARTS OF EASTERN GANGA - BRAHMAPUTRA PLAIN)

Central Ground Water Board Ministry of Water Resources Government of India PLATE - XXIII

ALLUVIUM AQUIFER

(PARTS OF WESTERN INDO-GANGETIC PLAIN)

Central Ground Water Board Ministry of Water Resources Government of India

