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PREFACE

The computation of branched flows in alluvial channels, quite common in nature
is of paramount importance in various flood management programmes. Man-made
branching may be done to enhance the performance of a stream. Most of the models to
study branched flows are for rigid bed condition whereas in reality the branched flow
ocours tn alluvial conditions. Problems like erosion of river islands and formation of
deltas can never be attempted by such rigid bed models. Analytical models are for highly
simplified cases and physical models are expensive and time consuming. Mathematical
models have become popular due to advent of fast computers. However, mathematical
medeling of branched flows in alluvial conditions is not easy and straightforward. Unlike
the water flow dynamics, where equations are well established, sediment flow dynamics
is not properly understood. Almost all sediment discharge relations are empirical by
nature and their success depends on local conditions. Moreover, the bed roughness
characteristics change a lot due to transport of sediments. The interplay between water
flow, sediment-discharge and bed roughness is still 4 subject of research. The importance
of analysis of alluvial streams is increased due to transport of pollutants by sediments.

In this report, a detailed review is prepared for the mathematical modeling of
flows in alluvial condition, Various computer codes for the above purpose are presented.
A model for simple-island case is also proposed.

This work is performed under the regular work programme of the Flood

Studies Division of the Institute and the report is prepared by Dr. P. K. Mohapatra,
Scientist 'B.

\o—

{ 8. M. SETH )"
DIRECTOR



ABSTRACT

Branched flows in open channels with alluvial conditions occur in natural and
man-made systems. Analysis of such flows by mathematical modeling is important
considering its applications in water resources and environmental engineering. In this
report, a detalled review of existing models for flows in alluvial streams is presented.
Models may be categorized based on (i) equations used, (ii) numerical method applied,
and, (iii) consideration of physical processes. The goveming equations for water flow and
sediment {low are presented. The equations to be satisfied at junctions are also presented.
Solution strategies and their variations are discussed. Various numerical methods for the
solution of the governing equations are mentioned. Implementation of the boundary
conditions is also described. A large number of existing computer codes to study flows in
alluvial streams is presented. Performance of various models is problem dependent and
no model is suitable for all types of problems. This is due to the poor understanding of the
relation between flow and sediment transport. Thus, there is a scope to find the exact
mechanism of sediment transport, which can be a potent area for future research. In
addition, the roughness characteristics of the channel bed should also be estimated in the
presence of sediment transport. Finally, a numerical scheme based on one-dimensional
equations, a quasi-steady assumption and an uncoupled approach using explicit finite-
difference method, is proposed. Although the model is expected to perform with greater
efficiency and robustness, it is yet to be tested against measured data and needs further
study.
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1.0 INTRODUCTION

Branched flows in alluviat rivers/channels are very common in natural and man-
made systems and occur when the flow is divided into more than one separate channel.
Tributaries flow into and distributaries flow away from the main river. Deltas are formed
as streams deposit bed load and coarser suspended sediments where carrying capacity of
streams is reduced. The stream gets braided if the bank material is easily eroded, if the
sediment load is composed in large part of sands and gravel moving as bed load, and if
the dunes that are formed are large (Petersen 1986). This gives rise to a very complex
flow network. Branched flow may occur due to natural islands in a river. The irrigation
system is always associated with branching due to the networking consisting of main
canals, branch canals, minors and distributaries. Diversion channels are often constructed
for flood control purposes. Prior to a dam construction, provision of a diversion tunnel is
a common practice. Cut-off channels are either man-made or natural and are useful to
protect the banks of a highly meandering river,

Branched flows can be either looped, where the branches join again at a
downstream point, or non-looped where the branches do not meet again. Looped flows
can be (i) single looped, and, (ii) multi-looped. The single looped flow is known as
Simple Island, the multi-looped channel as Muitiple Island and the non-looped flow as
Tree type flows. Channel junctions can be divided into two categories, viz. point type
junction and storage type junction (Yen 1979). For junctions with insignificant storage
capacity, the junction can be considered as a point type junction. It is represented by a
singie confluence point without storage. The net discharge into the junction is, therefore,
zero at all times. The reservoir type of junction is assumed to behave like a reservoir with
a horizontal water surface. It is capable of adsorbing and dissipating all the kinetic
energy of the flow. The net discharge into the junction is equal to the rate of change of
storage in the junction. A typical branched flow in open channel is shown in Fig. 1.

The physical processes involved in a branched open channel flow in alluvial
condition are highly complex. The flow is unsteady, three-dimensional and turbulent.
Transverse and circulating flows are very prominent near the junction. If the branch
channel is highly curved, the flow away from the junction may alsc have transverse
components. Presence of a bore adds to the complexity as it poses a discontinuity in the
water surface. Inclusion of either lateral inflows/outflows or a porous media makes the
flow spatially varied. In an alluvial condition, the channel bed is mobile and dynamics of
sediment plays a major role. It includes the processes of bank erosion and
aggradation/degradation of channel bed. Transport of pollution may also take place. The
time scale of flow variation is significantly different from that of bed level variation, The
flow patterns are govemed by the approaching flow, geometry of branches, bed
conditions and characteristics of sediments. Flow, sediment transport and channel
roughness/ channel geometry in a fluvial stream are interdependent. The flow affects the
sediment transport, which controls the hydraulic roughness and channel geometry through
bed-wave formation and sediment deposition/erosion. The hydraulic roughness and
channel geometry, in tum, affects the flow. For example, it is possible to have multiple
flow velocities and sediment transport rates for the same flow depth or discharge in a
given channel, depending on the bed form. Thus, to make depth-discharge predictions for
alluvial flows requires knmowledge of the relationships among flow parameters,
fluid/sediment properties, and the hydraulic roughness affected by sediment transport.



Fig. 1 Branched Flow

Here lies the crtical difference between an alluvial flow and a rigid channel flow and the
source of the difficuities dealing with alluvial streams.

In an alluvial environment, a channel has four degrees of freedom, i.e. flow depth,
bed width, longitudinal slope and layocut of the channel, all of which may undergo changes
with space and time. Accurate analysis of flow variables in a branched flow is essential in
many engineering applications. Estimation of the free surface elevation helps in the
determination of the effect of hydraulic structures on upstream and downstream channels,
estimation of flood zone and determination of the safe and optimum operation of control
structures. The design of diversion channels and cut-offs greatly depend on the gquantity of
flow to be passed through them. Design of various structures to prevemt bank erosion,
scouring and deposition of channel bed also depends on such analyses. Hydraulic and
environmental engineers have a great need to evaluate the transport, deposition, and re-
suspension of sediment for the planning and operation of river and canal system. This
requirement is made greater by environmental assessment and clean up activities, since fine
sediments act as a career of many toxic chemicals, heavy metals, and radio-nuclides.

Analysis of a branched flow in open channels with alluvial bed conditions can be
performed by physical modelling of the problem under consideration. A thorough knowledge
of similitude analysis, flow visualisation techniques and flow measurements is necessary for a
successful completion of the experiment. Laboratory as well as field models may be
employed for the purpose. In physical modelling, very close implementation of the boundary
conditions and flow geometry is possible. The results are reliable and greater understanding
of the problem is achieved. However, the methods are costly and time consuming. Besides,
scale effects may also be present. Though mathematical modelling is abundantly used, it can
never replace physical modelling. A companson between physical, analytical and numerical
models is presented by Anderson et al. (1984).

Previous studies with respect to the branched flows show that most of the studies are for rigid
beds, A detailed literature review on rigid bed branched flow modelling has been presented
by Palaniappan and Mohapatra {1997). Also, there are many studies concerning experimental
or analytical solutions for highly simplified cases. The temporal variation of the channel bed
is also missing. Although, experimental and analytical studies contribute significantly to our
understanding of open channel flows in alluvial conditions, mathematical modelling of
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Movable bed hydraulics has become an active area of research in computational
hydraulics. Mathematical models for alluvial channels essentially solve the governing
equations describing conservation of mass and momentum. The sediment flow is
represented by the sediment continuity equation and a sediment transport equation which
relates the sediment discharge to the flow parameters. This sediment transport equation is
generally an empirical equation based on laboratory and/or field observations. The above
governing equations for water and sediment constitute a set of non-linear hyperbolic
partial differential equations for which analytical solutions are possible for simple cases
only. Therefore, these equations are solved using numerical schemes. Either Finite-
Difference or Finite-Element methods can be used for this purpose. Most of the standard
models can be classified into either uncoupled models, wherein the water flow equations
and sediment continuity equations are solved separately during a given time step or
coupled models wherein all the equations are solved simultaneously. They can be
classified as either unsteady models or quasi-steady models. The unsteady models solve
the complete equations and quasi-steady flow models assume that water flow is steady
during the computation of bed level variation. Models elso differ with respect 1o the
physical conception. Some models use uniform size sediment while others use non-
uniform size sediment and attempt to simulate complicated processes like bed armouring.
For the modes of transport of sediment, some use total load concept while others make a
distinction between different mode of transport. A detailed classification of models is
presented in Fig. 2. Numerous methods and formulas are available to predict stage-
discharge relationships, and to calculate sediment transport rates in rivers. They are an
integral part of numerical sediment transport models.

The main objectives of this report are;

(i) to review previous works pertaining to mathematical modeling of flow in open
channels with alluvial conditions, and, (i) to propose a model to study the simple island
branch flow problem.

In this section, the occurrence of branched flows, their main characteristics in
alluvial conditions and importance in engineering applications have been presented.
Equations governing the flow in alluvial conditions and numerical methods to solve them
are presented in sections 2 and 3, respectively. In section 4, various computer codés
suitable for ailuvial conditions are described in brief In the last section, important
conclusions of the present study and recommendations for future research are presented.
A proposed model for the case of a simple island flow is presented inn the Appendix.
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2.0 GOVERNING EQUATIONS

To simulate the unsteady flow in a branched open channel with alluvial
conditions, the governing partial differential equations for the flow of water and sediment
are numerically solved. In addition, the energy equation and the characteristic equations
are also to be solved at junctions. Although extensive research has been carried out to
understand the exact relationship between water flow and sediment movement (Shen
1970, Garde and Rangaraju 1985), the present knowledge in this area can only be
considered semi-empirical. In addition, complete solution of three-dimensional equations
of motion for water and sediment is very complicated. Generally, following two major
assumptions are made in the analysis.

(Velocity of sediment particles is not important.
(2) The sediment discharge at any point is uniquely related to the depth averaged
flow parameters at that point.

Above assumptions make the sediment continuity squation, sufficient, to describe
sediment-flow, The equation for the conservation of momentum for the sediment is
implicitly represented by the relationship between the sediment discharge and depth
averaged flow parameters. In this section, governing equations for water and sediment are
presented.

2.1 Water Flow

The two-dimensional unsteady gradually varied flow equations in open channels
are (Lai 1977, Jimenez 1987, Chaudhry 1993):

Continuity equation:

ok , Suh) , O0R) _

at e Ty ®

Momentum equation in x-direction:
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Momentum equation in y-direction:
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In the above equations (Eqs. 1-3), % is the flow depth, ¥ and v are the depth
averaged velocities in x- and y- directions respectively, g is the acceleration due to
gravity, and Sy, and S,, are bed slopes in x- and y- directions respectively, x- and y- are
co-ordinate axes in longitudinal and lateral directions and ¢ is the time.



The friction slopes are calculated using the following equations
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in which, » is Manning's roughness coefficient. Althcugh » is in general a
complicated function of flow depth, bottom roughness, bed slope, discharge and bed
forms, a constant value is generally assumed.

Equations (1) - (3) are obtained by depth averaging the three-dimensional
equations and making the following assumptions.

(1) Acceleration in the vertical direction is negligible.

(2) Velocity distribution is uniform over the flow depth.

(3)Bottom shear stress is dominant and all other shear stresses are negligible.
(4)Friction losses using steady state formula are valid for unsteady state.
(5)Channel bottom slope is small.

{(6)Flow is not spatially varied.

Above assumptions are valid for most of the gradually varied flow situations.
However, the governing equations do not account for the effective stresses which arise
due to (i)laminar viscous stresses, (ii)turbulent stresses, and, (iii)stresses due to depth
averaging.

Extra turbulent stress-like terms appear while depth averaging the momentum
equations because of the non-uniformity of the velocity in the vertical direction. Based
on experiments in the laboratory, Odgaard and Bergs (1988) have shown that the error
introduced by uniform velocity assumption is negligible. Flokstra(1977) also showed that
away from the walls the effective stresses are dominated by the bottom stress. However, it
should be noted that these effective stresses should be considered while simulating
circulating flows (Flokstra 1977). Therefore, the above equations are not valid where flow
separation occurs.

2.2 Sediment Flow

As discussed earlier, only sediment continuity equation and a sediment discharge -
water flow relationship are required for completely representing the sediment flow. In
cartesian co-ordinates, the sediment continuity equation is given by
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Where, Z is the bed elevation, g, and q,, are the sediment discharges per unit length in x-
and y- directions, respectively and, A is the porosity of the bed material, g, and g,
depend on the flow parameters at that point. Several relations are available for estimating
these guantities. Some common names in sediment discharge formulas for non-cohesive
sediments are: DuBoys, Schoklitsch, Shields, Meyer-Peter, Meyer-Peter-Muller, Einstein-
Brown, Laursen, Colby, Bagnold, Blench, Engelund-Hansen, Inglis-Lacey, Toffaleti,
Graf, Shen-Hung, Ackers-White, Yang, Maddock, Engelund-Fredsoe, Karim, Brownlie,
Rijn. These relations are well documented elsewhere (Graf 1971, Jansen et al.1979,
Richards 1982, and Garde and Rangaraju 1985). Nakato (1990) presented required input
data and their output for many of the formulas. Yang and Molinas (1982) evaluated six
important sediment discharge formulas for the case of five rivers. These formulas are
however, site-specific. Application of any formula needs verification before use. As
suggested by Vanoni (1975) and Jansen et al. (1979) many of these equations can be
represented in the following functional form.

x = 3Y) Q)

where, ¥ is a transport parameter and ¥ is a flow parameter. The transport parameter
depends on the sediment discharge and grain properties, while the flow parameter
depends on the flow properties and bed characteristics.

2.3 Junctions

In branched flow, the conditions at junctions are to be satisfied in addition to the
governing equations mentioned above. These are;

Continuity Equation:

a5
20,300 =— (8)
ot
Energy Equation:
2 2
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In the above equatiors, ' is the discharge, S is the storage at the junction and E; is the

energy loss beiween the sections. It may be noted that the cross seciional areas, A, and A4,
are perpendicular to the flow at those sections.

2.4 one-dimensional Equations

The one-dimensional equations can be obtained from the two-dimensional
equations by averaging them for any cross-section and assuming, that the velocity, bed
level and flow depth, do not vary across the width, These are given as below:



Continuity equation for water:

asl.l.,gg:g
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Momentum equation for water:
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Sediment Continuity equation:

alzB( - 1), 3BQ, _

0 12
ot ox (12)

In the above equations, 0, = sediment discharge, B = channel width.

In addition to the above cquations, equations for sediment transport and bed
resistance have to be used and the equations for the junctions are also to be satisfied.



3.0 NUMERICAL SOLUTION

The governing equations for unsteady flow of water and sediment transport as
discussed in section 2 constitute a set of non-linear hyperbolic partial differential
equations {Lyn 1987). Analytical solutions for these equations are available only for
idealized cases. Therefore, they are solved numerically. In this section, numerical
schemes are presented for the solution of these equations.

The poverning equations should be solved simultaneously. Complete unsteady
equations should be considered for accuracy. However, the following assumption makes
the model computationally efficient. Bed level changes occur at a much siower speed than
the flow changes and unsteady terms in water flow equations may not be important while
simulating the bed transients (De Vries 1965). Therefore, a quasi-steady approach where
the flow parameters for water are constant during a small period of bed elevation change
due to sediment flow may be used. The water flow equations and the sediment continuity
equation are solved separately in an uncoupled model. The strategy for solution (Fig. 3) is
to first compute the steady flow parameters for computing the sediment discharge values
at different sections. These sediment discharge values are then used in sediment
continuity equation for computing the bed level changes. After solving the sediment
continuity equation, the flow computation is repeated with the new bed configuration and
the procedure is continued until the required time level is reached. In the following
subsection, various modules of the flow chart are described.

3.1 Flow Model

Flow model for a branched flow is performed by numerically solving continuity
equation, momentum equation and equations at junctions. In the momen.um equation,
friction slope may be calculated using a suitable bed friction formula (e¢.g. Manning
equation, Darcy-Weisbach equation etc.). One may consider one- or two-dimensional
equations depending on the problem under consideration. A suitable numerical scheme is
then adopted to solve the partial differential equations. Different methods include Finite-
Difference Method, Finite-Element Method, Finite-Volume Method, Spectral Methods
and Method of Characteristics. For the analysis of flows in open channels, Finite-
Difference Methods are well developed and a lot of numerical experimentation on various
aspects of the method has already been tested. Numerical methods described by
Mahmood and Yevjevich (1975), Chaudhry (1981) and Chaudhry(1993} are very well
suited to solve shallow water unsteady flow equations. Advanced methods are also
available in literature for the above purpose (Savic and Holly 1991, Garcia-Navaro et al.
1992, Molls and Molls 1998,). Methods using advanced equations (other than Saint
Venant equations) are also found in the hiterature (Tome and McKee 1994, Khan and
Steffler 1996, Tsai and Yue 1996, Rudman 1997). The numerical scheme should be stable
and convergent. The effect of grid size and time step size should be tesied. Before
applying the model to the actual problem, the performance of the model should be
verified against known data for similar situations. In case of steady flow equations, the
solution procedure becomes easy and very accurate numerical integration methods are
available (Press et al. 1993). For the solution of the energy equation at the junctions, a
suitable method 1o solve non-linear algebraic equations may be used.
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3.1.1 Boundary Conditions

The system of equations is closed by implementing the boundary conditions.
Implementation of boundary conditions depends on type of flow (subcritical ot super
critical). There are two types of boundaries in a branched flow. An open boundary could
be either an inflow or an outflow and the junctions are treated as internal boundaries, In
an inflow boundary, a negative characteristic equation is solved using the prescribed time
history of discharge. Similarly, at an outlet, a positive characteristic equation and a known
stage-discharge relationship are solved. In a junction, continuity equation and energy
equation between the neighboring sections are satisfied.

3.2 Sediment Discharge

The sediment routing is performed by two parts, i.e. (1) computation of sediment
discharge using a suitable formula, and, (2) numerical solution of the sediment continuity
equation. For time-dependent and non-equilibrium sediment transport, the bed material is
divided into several parts depending on their particle size. There are many sediment
discharge relations available. it may be noted that none of these is suitable for all
purposes. Therefore, a comparative study among the formulas should be performed and
the closest one should be used. A correction may be applied to the estimated sediment
discharge based on formulae. This correction is due fo availability, sorting and diffusion
of sediment particles.

3.2.1 Boundary Conditions for Sediment Flow

The rate of sediment inflow into the flow domain is given by the upstream
boundary condition. If the rate is known, it may be prescribed. When unknown, the
upstream boundary is extended further and the bed is assumed unchanged at that place.
An extrapolation boundary condition for the downstream boundary may be used.

3.3 Sediment Continuity

Sediment continuity equation is also a ron-linear partial differential equation.
Therefore, it may be solved numerically. The discretization method (conversion of partial
differential equation to algebraic equation) can be different from that used in the flow
equation. Generally, the time step used in this equation is larger than that used in the
solution of flow equation. However, in case of a coupled model, the flow equations and
the sediment continuity equation have to be solved simultaneously. Therefore, a common
discretization method and the samie time step may be used.

3.4 Bed Level Change

Change in the cross sectional area is obtained in the numerical solution of the
sediment continuity equation. This change in the cross section is applied to bed and
banks. First, the direction and rate of width adjusiment, and then the bed level changes are
caicuiated. If the banks are stable, anly the bed level changes are calculated,

3.4.1 Width Change

For a given time step, it is assumed that the spatial distribution of the stream
power along the channel reach moves towards uniformity. A reduction in width at a cross
section is due to decrease in energy gradient at the section and an increase in width is due
to increase in the energy gradient. Therefore, based on the energy gradient of the section
with respect to weighted average of the neighboring sections, width at the section is
adjusted. Width changes in alluvial rivers ar¢ characterized by widening during channel

11



bed aggradation and reduction in width at the time of degradation (Chang, 1988). For a
time step, the magnitude of change in width depends on the sediment discharge rate, bank
configuration, and bank stability, An increase in width is due to sediment removal along
the banks. For the erosion of banks, a factor {bank erodibility factor) is used. The factor
varies from zero (for non-erodible banks) to one {for highly erodible banks) and its value
should be determined by calibration. A decrease in the channei width is due to sediment
deposition along the bank.

After the calculation of change in bank widths, bed level is adjusted. Total change
in cross sectional area is the sum of change in area due to width and due to bed level.
Thus, the aggradation or degradation of the bed can be found out. Methods are also
available to calculate the change in bed level along the width (Chang 1988).

Quantitative time-dependent models of width adjustment that are currently
available are presented in Table 1 (ASCE Task Committee, 1998). These modcels can be
divided into two broad approaches: (a) those based on extremal hypothesis; and (2} those
based on the geofluvial approach. The former have been used in engineering practice
more frequently than the latter.

Table 1: List of mathematical models for width adjustment

Model/Authours Year Category
Darby and Thome 1996 Geofluvial, Cohesive bank
CCHEBank(Li and | 1993 Geofluvial, Noncchesive bank
Wang)

Kovacs and Parker | 1994 Geofluvial, Noncohesive bank
Wiele 1992 Geofluvial, Noncohesive bank
RIPA (Mosselman) | 1992 Geofluvial, Cohesive bank
Simon et al. 1991 Geofluvial, Cohesive bank
Pizzuto 1990 Geofluvial, Noncohesive bank
STREAM2 (Borah | 1989 Geofluvial, Cohesive bank
and Bordolot)

GSTARS (Yang et | 1988 Extremal hypothesis

al)

FLUVIAL-12 1988 Extremal hypothesis
{Chang)

Alonso and Combs | 1986 Geofluvial, Cohesive bank
WIDTH (Osman) 1985 Geofluvial, Cohesive bank

12



3.5 Calibration of the Model

The success of a mathematical model greatly depends on the equations used to
account for the actual physical processes, implementation of boundary conditions and
numerical method applied. Before applying the model to actual situation, it must be tested
for known results and various mode! parameters should be calibrated. Important items
requiring calibration are Manning roughness coefficient, sediment discharge relation,
bank erodibility factor, and bed erodibility factor. Numerical parameters such as step size
and time steps should also be tested. The limitations of the model should be clearly
" mentioned.

3.6 Data requirement
The following data are required to compute the flow in an island.

Time variation of discharge in the main channel,

Cross-section details of main and branched channels,

Stage - discharge relationship for the downstream main channel,
Bed slope for all the channels,

Roughness characteristics of all the channels, and,

Grain size distribution of the flowing sediment.

3.7 Modelling of a simple island

In the above sub-sections, methodology to model flow in a single reach is
described. For an island flow, the junctions are treated as an internal boundary. The
continuity equation, the energy equations and the characteristic equations depending on
the case of a upstream or downstream boundary, are to be satisfied for the junctions. A
proposed model is presented in the Appendix. However, in the absence of observed data,
the model has not been validated. The performance of the model in terms of its
computational efficiency and robustness is subjected to further study.

13



4,0 COMPUTER CODES IN SEDIMENT
TRANSPORT

4.1 one~-dimensional Models

BHALLAMUDI AND CHAUDHRY: Bhallamudi and Chaudhry (1991) developed an
unsteady water and sediment routing model! to simulate aggradation and degradation of
channel bottom. They solve the Saint Venant Equation and sediment mass conservation
equation simultaneously using the MacCormack explicit Finite-Difference method. The
model can handle shocks and discontinuities in the solutions of these equations without
iterations. It uses Manning’s n for friction and power functions of unit discharge and
depth for calculating sediment discharge capacity.

CHARIMA: It is an extended version of IALLVIAL and was developed by Holley et al.
1990). It solves flow and sediment routing in unsteady multiply-connected fluvial
channels with reverse flows. It includes TLTM, the Ackers-White, and Engelund-Hansen
formulas, and a site specific power law for non-cohesive sediment discharge calculations.
The model also simulates cohesive sediment routing. Jain and Park (1989) have
conducted a similar modeling with the use of the Karim's coupled friction factor and
sediment discharge relationships.

FLUVIAL 11: FLUVIAL 11 is an unsteady, one-dimensional, finite-difference flood and
sediment routing model formulated in a curvilinear coordinate system (Chang 1984). The
model calculates inter related changes in channel bed profile, widih, and lateral migration
in channel bends. The energy slope is divided into the longitudinal energy gradient and
the transverse energy gradient as a result of a secondary current existing in a curved
channel. The mode] uses the Yang, Engelund-Hansen, Graf, Parker et al. (1932) and
Ackers-White sediment discharge formulas.

HEC-28R: It is a combination of water routing model and sediment routing model. The
water routing model is HEC-2 and was developed by Hydraulic Engineering Center
(1982). The sediment routing model was developed by Simons et al. 1980. HEC-28R uses
a step backwater computation method for water routing. It solves the Exner equation for
sediment routing. The mode! uses Meyer-Peter-Muller formula for the bed load and the
Einstein method to calculate suspended sediment capacity.

HEC-6:HEC-6 was developed by the hydrologic Engineering Center in 1977. It is one of
the widely used codes. It uses one-dimensional flow and sediment equations to simulate
riverbed profile changes over years. Flow is assumed steady and the gvf equation is
solved. A series of steady flow events can be connected to represent long-term continuous
flow. The model does not use a stage -discharge predictor directly to account for the
effect of bed form on hydraulic roughness. It separates energy losses into friction loss
and form loss (due to channel expansion/contraction). Manning's roughness coefficient
for bed roughness is used in the model to express friction loss. For sediment transport, the
model uses the Exner equation (Eq. 5.4) with sediment discharge formulas. A user can
select one of the following sediment discharge formulas: Toffaleti, Modified Laursen,
Yang, DuBoys, Ackers-White, Colby, Combination of Toffaleti and Schoklitsch, Meyer-
Peter-Muller, Combination of Toffaleti and Meyer-Peter-Muller, Partheniades-Krone, and
a user specified relationship.



TIALLVIAL: TALLVIAL is a quasi-steady, finite-difference flow and sediment routing
model (Karim et al. 1987). It predicts water routing by step back water method. Exner
equation is solved for the sediment mass balance. It includes an iterative coupled
sediment discharge and friction factor predictor (TLTM). TLTM was developed by Karim
and Kennedy (1981).

KUWASER: KUWASER was developed by Simons and his associates (NRC 1983) to
simulate steady state, one-dimensional flow and sediment transport. The sediment
discharge per unit width is expressed as a power function of mean flow velocity and
depth and is site specific.

ONED3X: The US Geological Survey developed a series of computer codes collectively
called ONED3X by solving fully coupled unsteady, one-dimensicnal, flow and sediment
equations by multi mode method of characteristics (Lai 1988). The sediment
concentration is assumed to be a power function of velocity and water depth, and its
functionality is site specific. The codes use the Manning or Chezy equation for friction.

STARS: STARS is a steady, one-dimensional, water and sediment routing model
(Molinas 1983). Its unique feature is the use of stream tubes to divide each cross section
into multiple equal discharge sections. This allows lateral variation of flow and sediment
movements. Thus, the model can simulate simultaneous erosion and deposition within the
samne cross section. It uses the Meyer-Peter-Muller, Einstein, Engelund-Hansen, Toffaleti,
Yang, and Ackers-White sediment discharge formulas. Manning's n is used for friction.
Use of the streamn tubes was further extended by Molinas and Yang (1986) to develop
‘GSTARS to handle one-dimensional, semi- two and three dimensional cases of
supercritical, critical and subcritical flows. GSTARS uses the Yang, Engelund-Hansen,
and Ackers-White sediment discharge formulas. It uses Manning, Darcy-Weisbach, or
Chezy equations to determine the energy loss along the river reach.

TODAM:TODAM is an unsteady, one-dimensional, finite element, sediment and
contaminant transporl code, without water routing predictive capabilities (Onishi et al.
1982). It solves for distributions of cohesive sediment, non-cohesive sediment,
contaminants, (eg. toxic chermicals, heavy metals and radio nuclides) attached to the
sediments, and dissolved contaminants in water and bed, with the output of a
hydrodynamic model. TODAM includes sediment contaminant interactions and transport,
depositicn, and erosion of sediment and sediment sorbed contaminant, as well as
chemical and biological degradation/decay of contaminants. Changes of bed conditions
are calculated by bookkeeping of the changes occurring during the simulation. TODAM
is applicable to rivers and well-mixed estuaries.

UUWSR: It was developed by Tuci et al. (NRC 1983) as an unsteady, one-dimensional,
uncoupled water, and sediment routing model. Treatments of the friction factor and
sediment discharge capacity calculations are similar to those in KUWASER.

4.2 Two-Dimensional Models

There are far fewer true two-dimensional medels for sediment transport than one-
dimensional models. The two-dimensional models generally solve the Reynelds form of
the Navier-Stokes equation, in place of the Saint-Venant equations. They also solve the
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advection-diffusion equation as often as they solve a two-dimensional version of the
Exner equation. The following are examples of the two-dimensional models.

FETRA: FETRA is an unsteady, two-dimensional, finite-element sediment and
contaminant transport code (Onishi 1981). It does not have its own hydrodynamic
calculation. Its input requirements are compatible with output from the finite-element
hydrodynamic codes RMA-2 and CAFE. It simulates transport, deposition, and re-
suspension of sediments, dissolved contaminants, and sediment-sorbed contaminants in
water and bed, along with their interactions. FETRA is applicable to rivers, estuaries, and
coastal waters. It uses DuBoys' formula for non-cohesive sediment without surface
waves, When wave effects are important, Liang and Wang formula and Komar formula
are used to obtain the wave induced sediment discharge. In case of cohesive sediments,
Paretheniades and Krone's formulas are used.

ODGAARD: Odgaard (1989) developed a steady, two-dimensional hydrodynamic and
sediment transport code. It uses orthogonal co-ordinate system to solve meandering flow
and associated meandering development and sediment transport. Since depth-averaged
flow cannot reflect the helical motion caused by centrifugal acceleration acting on the
flow, Odgaard assumed vertical distribution of the longitudinal and !ateral velocities. By
linearizing velocities, he then cast the momentum equations into two vartables, lateral
velocity gradient and lateral bed slope along the center line. The module uses Darcy-
Weisbach equation for friction. It also assumes a power law for the longitudinal sediment
discharge , while using Ashida and Michiue’s (1972) relation to correlate the lateral
sediment discharge to the longitudinal discharge.

SEDIMENT-4H: It is very similar to TABS-2. It is based on one- and two-dimensional
hydrodynamic and sediment transport formulation {Ariathurai 1980).

SERATRA: SERATRA is an unsteady, finite-element sediment and contaminant
transport code. It is a two-dimensional version of TODAM. It was developed by Onishi et
al {1982).

SHIMIZU & ITAKURA: Shimuzu and Itakura (1989) developed a steady, two-
dimensional hydrodynamic and sediment transport model in a orthogenal curvilinear
coordinate system to handle symmetric and unsymmetrical meandering channet flow. The
model solves the Navier-Stokes equation and Exner equation. It uses Manning equation
for bed friction. For the sediment discharge calculation, it uses the Mayer-Peter-Muller
formula for longitudinal sediment load and Hasegawa equation for lateral sediment load.

TABS-2: The Waterways Experiment Station developed several unsteady, two-
dimensionai, finite-eilement hydrodynamic and sediment transpori computer codes
collectively called TABS-2. These codes are applicable to rivers, reservoirs and estuaries.
The main components of TABS-2 are the hydrodynamic component (RMA-2V), the
sediment transport component (STUDH), and the water quality component (RMA-4).
RMA-2V solves the Reynolds equation. It does not take into account the interaction
between bed form and friction factor. STUDH can compute both cohesive and non-
cohesive sediment transport. It uses the Ackers-White sediment formula for bed material
transport capacity. Changes in bed conditions are handled by bookkeeping. '



TWODSR: TWODSR is an unsteady, two-dimensional, uncoupled, finite-difference
water and sediment-routing model. It uses the Reynolds equations with the continuity
equation to simulate hydrodynamics. For sediment transport, it uses a two-dimensional
expression of the Exner equation with sediment transport capacity expressed as a power
function of flow discharge. For bed friction, it uses Manning equation or Chezy equation.

4.3 Three-Dimensional Models

FLESCOT: FLESCOT (Onishi et al. 1985) is a sediment contaminant version of the
general hydrodynamic transport code TEMPEST (Onishi et al. 1985). It is an unsteady,
three-dimensional, finite-difference code and simulates flow, turbulence, water
temperature, salinity, sediment, dissolved contaminants, and sediment sorbed
contaminants for rivers, estuaries, lakes, coastal waters, and oceans. The code can run
with or without the use of hydrostatic pressure assumption. It uses three-dimensional
forms of equations for sediment transport, The code uses Manning equation, Chezy
equation or Darcy-Weisbach equation for bed friction. It uses DuBoys' formula for non-
cohesive sediment and Partheniades formula for cohesive sediment. Grant's non-linear,
wave enhanced bottom shear stress formula (Grant and Madsen 1979) is built into the
code to calculate wave -enhanced sediment transport (Onishi et al. 1993), as one of the

options.

SHENG: Sheng (1993) developed an unsteady, three-dimensional, finite-difference code
1o simulate flow, turbulence, salinity, water temperature, and sediment and water quality
parameters. It is applicable to rivers, lakes, estuaries, coastal waters, and oceans. The
code uses a two-mode hydrodynamic calculation with internal and external modes. For
the external mode, it calculates water surface elevations by solving depth-averaged
hydrodynamic equations with 2 small time step. With the calculated water surface, the
internal mode then calculates three-dimensional velocity distributions with a much larger
time step. This approach is very useful for long-term simulations.
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3.0 CONCLUSION

In this work, numerical modeling of branched open channel flows with alluvial
conditions was presented. Governing equations for water flow, sediment-flow and flow at
junctions were presented. Numerical methods to solve these equations for engineering
applications were described. Various computer codes suitable for open channel flows in
alluvial conditions were mentioned. Based on the literature survey, a One Dimensional
model, for simple-island flow in alluvial conditions, using quasi-steady flow assumption
and uncoupled approach was proposed. The following important conclusions were drawn
out of the present study.

1. Highly accurate equations are available for rigid bed flows. The mechanics of flow in
alluvial conditions is not well understood.

2. There are a number of numerical models available for flows in alluvial conditions.
Suitability of a model depends mostly on the sediment discharge relation used.

3. A large number of sediment discharge relations are available. These are either
empirical or semi-empirical in nature and therefore, cannot be used universally. Their
successful performance (accurate predictions) greatly depends on the similarity to
conditions of their origination.

4. In a mathematical model for alluvial streams, the bed roughness characteristics should
be calibrated.

5. The proposed model must be verified for measured data before its application to field
situation.

6. Calibration of parameters (bed roughness coefficients and sediment parameters) should
be performed before its use.

The following suggestions are made for future research.
1. Calibration of the proposed model (see Appendix).

2. Development of sediment discharge based on flow velocity distribution in a vertical
plane (not as a function of depth averaged velocity).

3. Two-dimensional modeling near junctions taking secondary flows into account.
4. Laboratory study (physical modeling) of a branched flow in alluvial conditions.

5. Erosion of banks and aggradation/degradation of beds with help of a parametric study.
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Appendix

MODELING OF A SIMPLE ISLAND

In this appendix, a model is proposed to study the case of a simple island with
alluvial conditions. The model uses a quasi-steady uncoupled approach and an explicit
finite-difference formulation for one-dimensional equations. The model is described in
the following paragraphs.

Governing Equations

Continuity Equation for Water;

oBh aVBh
6t ax

=0 (4-1)

Momentum Equation for Water:

aQ i_)VB” Bh—=gBh(S -5,) (4-2)

Sediment Continuity Equation.

dlzB(1 - 1)) , 9BG

ot ox ( )
Friction Formula:
n2V2
3, = 3 {(A-4)
h a
Sediment Discharge Equation:
G=a¥) (4-5)

Continuity Equation at the Junction:

EQI' _ZQ(}:O {4-6)

Energy Equation at the Junction:

2 2

V,
hl+Z,+:2—‘§=h2+Zz+[2/—2g+EL (A-7)

In the above equations, ¥ is the depth averaged flow velocity, and, 2 and b are the
constants used in the sediment discharge formula.
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Numerical Solution

The simple istand consists of four channels and each channel is divided into a
number of reaches (Fig. A-1). Thus, any section is represented by x,;, where, i and j
indicate the channel and node respectively. For example, x3s is the fifth node in the
second channel. Similarly, velocity, flow depth, bed level and cross sectional area are
represented by double subscripted variables. As the flow is transient, all flow variables
are superscripted with time level. Thus, #';; represents the flow depth of channet i in j*

section at time £.

Junction

Fig. A-1: A Simple Island

Input

The input values are; (1) Channel cross sections at selected places for all the four
channels, {(2) Bed slopes at different reaches, {3} Lengths of each channel, (4) Number of
reaches in each channel, (5) Manning » for different reaches, (6) Courant number for
stability criteria (calculation of time step), (7) Acceleration due to gravity, (8) Sediment
parameters a and b, (9) Time of computation, (10) Stage-discharge relationship for
downstream end, and (11) Time history of discharge at upstream end.

Computational Grid
Based on the channel length and number of reaches, the computational grid size is
computed for each channel.

Time Step: The computational time-step for the flow equations is determined using
Courant condition of stability. The computed time step may be different for different
channels. The minimum of all the values is used, Time step is calculated in the beginning
of each computational cycle.

St-Venant: The flow equations, Egs. A-1 and A-2, (Saint Venant Equations) are solved

using MacCormack scheme (Chaudhry 1981, Chaudhry 1993). This scheme is second
order accurate and is suitable for both sub- and super-critical flow situations. It is capable
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of capturing shocks also. The friction slope term, §; in Eq. A-2 is evaluated by using Eq.
A-4.

Boundary Conditions: All flow variables are known at the start of computation (initial
conditions). For a new time level, these are computed using the numerical solution of the
governing equations only at the internal nodes. The flow variables at the boundaries are
not determined using the numerical solution of the governing equations. The following
boundary conditions are used to calculate the variables.

Upstream of Ch-1: Negative characteristics equation and inflow hydrograph.

Downstream of Ch-4: Positive characteristics equation and stage-discharge
relationship.

Junction-1: Continuity for Q using Eq.A-6 (Q:=0Q.1Q1)

Energy equation for last node of Ch-1 and first node of Ch-2
Energy equation for last node of Ch-1 and first node of Ch-3
Positive characteristic equation for last node of Ch-1
Negative characteristic equation for first node of Ch-2
Negative characteristic equation for first node of Ch-3

Junction-2: Continuity for Q (Qx+Qy=0Q4)
Energy equation for last node of Ch-2 and first node of Ch-4
Energy equation for last node of Ch-3 and first node of Ch-4
Positive characteristic equation for last node of Ch-2
Positive characteristic equation for last node of Ch-3
Negative characteristic equation for first node of Ch4

The flow model is executed until it attains nearly steady state and then the control
is passed to the sediment routing model.

SEDIMENT ROUTING

Sediment Discharge: After the computation of flow variables, sediment discharge is
estimated by using Eq.A-5. This relation is only valid for sediments of uniform particle
size. It may be noted here that this may be replaced by a better formula if required. This is
used here only due to its simple form.

Sediment Continuity: sediment continuity equation, Eq. 15, is solved by a first order
scheme. The discretization is performed by backward finite-difference. Generally, the
time step used for sediment coniinuity {O{i000s)] is much larger than that used in the
flow routing [O(1 s)]. The value of time step is decided by numerical experimentation
using the criterion that the end-resuit is nol affected by the highest value. The scheme
being backward finite-difference, only the boundary condition at the upstream end has to

be prescribed. In this model, it is assumed that the initial condition remains same.
Bed Width Modification: The change in cross sectional area is calculated by solving the

sediment continuity equation. This change in cross section is partly due to change in
width and partly due to change in elevation. First, the direction of width adjustment is
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found out by comparing the friction slope, S5 with that of the weighted friction slope of
the neighbors, §;

I 8 > (57 then Width is decreased
If S¢ < (8) then Width is increased
If 8, =(8p then Width is not changed

The magnitude of change in width is calculated by multiplying a factor (0 to 1)
with the sediment discharge rate.

Bed Level Modification: After calculating the change in bed width, the bed elevation is
adjusted such that the change in area remains constant. Thus, the aggradation and/or the
degradation of the channel bed can be known. The modified bed slopes are calculated
based on the modified values of bed elevation

The whole of the computation, starting from the flow routing is repeated till the
required time level is attained.

Limitations
The present model is not verified against measured data. Therefore, its
performance is not known. However, based on the literature work following limitations
should be borne in mind.
1. Flow is one-Jimensional.
2. Bed roughness coefficient is constant.
3. Estimation of sediment transpott parameters (2 and & in Eq. A-4).
4. Estimation of energy loss in the energy equation (Eq. A-7), at the junctions.
5. Use of a first order scheme for sediment continuity.
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