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Preface

Dispersion occur in many problems of groundwater flow, such as pollution from
concentrated and distributed source, sea water intrusion, seepage of polluted surface
water through rivers or lakes, changes in water quality due to artificial recharge.
Application of the solution of advection-dispersion equation in soil media for
prediction and forecasting of solute conmcentrations requires the estimate of
coefficient of hydrodynamic dispersion (commonly known as ’dispersion coefficient’).
One of reliable alternatives for estimation of dispersion coefficient is to conduct a
tracer movement test in a soil column and analyze the data for dispersion
coefficient. In a tracer movement test, the exit concentration distribution (commonly
known as break through curve, BTC) with time is generally observed for known input
concentration which often is in the form of step change in concentration input. There
is a need to have a simple procedure for quick and reliably accurate estimation of
dispersion coefficient making direct use of BTC. In case when peclet number is low, a
optimization method is required for accurate determination of dispersion coefficient.

The present report entitled Estimation of Dispersion Coefficient from Data on
Soil Column Test, deals with the procedures to estimate dispersion coefficient from
exit concentration observed due to a step change in the concentration input. Both a
simple method and an optimization method have been evolved. The application of the
methods on published data sets have been discussed. This report has been prepared by
S.K. Singh, Scientist °E’, as per the Work-Plan for the year 1998-99 of Drainage
Division.
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Abstract

One of reliable alternatives for estimation of dispersion coefficient is to
conduct a tracer movement test in a soil column and analyze the data for dispersion
coefficient. In a tracer movement test, the exit concentration distribution (commonly
known as break through curve) with time is generally observed for known input
concentration which often is in the form of step change in concentration input.

In this report, both a simple method and an optimization method for estimation
of dispersion coefficient from data on soil-column test have been evolved,
Application of the method have been demonstrated on published data sets. The results
indicated that the present methods can estimate dispersion coefficient with reliable
accuracy. In the simple method, the calculations are very much simplified using which
quick and reliably accurate value of dispersion coefficient can be obtained.
Application of the optimization method requires a computer while the calculations for
the simple method can easily performed on a simple commercial calculator. A computer
orogram in FORTRAN has been developed for the optimization method.

(iii)



Contents

Page No.

Preface

Abstract

Content

1.0 INTRODUCTION
2.0 ADE Theory

2.1 Estimation of Dispersion Coefficient:
Past Methods

3.0 STATEMENT OF THE PROBLEM

4.0 DEVELOPMENT OF METHODOLOGIES
4.1 Simple Method
4.2 Optimization Method

5.0 APPLICATION TO DATA

6.0 CONCLUSION

ACKNOWLEDGEMENT

STUDY GROUP

(ii)
(i)
(iv)

[

V=T S N~ S

(iv)




1.0 INTRODUCTION

Dispersion is a fundamental physical process to all types of solute transport
problems. Besides river and streams, it occurs in many problems of groundwater flow,
e.g., pollution from concentrated and distributed source, sea water intrusion,
seepage of polluted surface water through rivers or lakes, changes in water quality
due to artificial recharge. A widely used approach for mathematicai modelling of
solute transport is through the solution of advection-dispersion equation(ADE). The
solutions of ADE, numerical or analytical requires the coefficient of ’hydrodynamic
dispersion’ (commonly termed as ‘dispersion coefficient’) to be known a priori. This
gives rise to the problem of estimation of coefficient of hydrodynamic dispersion
from field and laboratory fracer experiment data.

One of reliable alternatives for estimation of dispersion coefficient is to
conduct a tracer movement test in a soil column and analyze the data for dispersion
coefficient. In a tracer movement test, the exit concentration distribution (commonly
known as break through curve) with time is generally observed for known input
concentration which often is in the form of step change in input concentration.

In this report, both a simple method and an optimization method for estimation
of dispersion coefficient from data on soil-column test have been evolved.
Application of the method have been demonstrated on published data sets. The results
indicated that the present methods can estimate dispersion coefficient with reliable
accuracy. In the simple method, the calculations are very much simplified using which
quick and reliably accurate value of dispersion coefficient can be obtained.
dpplication of the optimization method requires a computer while the calculations for
the simple method can easily performed on a simple commercial calculator. A computer
program in FORTRAN has been developed for the optimization method.



2.0 ADE THEORY

The classical approach for dispersion modelling through advection-dispersion
equation(ADE) assumes uniform properties at macroscopic level. It also assumes that
rate of transport of pollutants due to dispersion in x-direction is directly
proportional to the mean concentration gradient a8C/ax, which is analogous to the
Fickian equation for molecular diffusion. Because of this one dimensional ADE model
is commonly referred to as 'one-dimensional Fickian model’. Different approaches of
modelling dispersion is summarized and given in the Appendix.

The PDF governing the advection-dispersion process of transport of ideal
solute in a homogeneous and isotropic soil medium is given by,

2
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where,
D = coefficient of hydrodynamic dispersion;
C = C(x,t) = concentration of solute;

x = distance w.r.t. a fixed origin;
t = time, and,

u = (2.2

Q
nA

in which, Q = discharge through the soil matrix, u = pore velocity, n = porosity of
sediment, and A = uniform cross-sectional area of porous medium through which flow

For the movement of a tracer in semi-infinite column, where, initially the
tracer concentration is zero everywhere in the column and then the column is
connected to a reservoir containing a tracer solution of comstant concentration, CO'
The initial and boundary conditions for this case can be expressed as,



Co,n = C, (2.3)
C(x,0) =0 (2.4)
Cl=t =0 2.5)

The analytical solution of eq.(2.1) under conditions expressed in eqs. (2.3)
through (2.5) is obtained by Ogata(1958) and can be written as (Bear, 1972),

%J;_t) =3 [erfc[%] + exp( gy )effc[ % ]] 2.6)
where

Vo2
erfe(v) = 1 -2 J. e de
I o

According to Ogata and Banks(1961), the second term in eq. (2.6) may be
neglected when ux/D is sufficiently large. Neglecting the second term of eq.(2.6) for
large value of ux/D, we get,

Cx,p _ 1 xut
_CO_ 3 erfc[ 213{] 2.7

If exit concentration is observed at the end of the soil specimen, x appearing
in eqs. (2.16) and (2.17) becomes the length of the specimen.

2.1 Estimation of Dispersion Coefficient: Past Methods

In a tracer movement test, the exit concentration distribution (commonly known
as break through curve) with time is generally observed for known input concentration
which often is in the form of step change in concentration input. The methods for
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estimation of dispersion coefficient from tracer movement in soil column mostly make
use of (2.7)

The method proposed by Bank(1958) makes use of (2.7). Knowing the values of
C/C0 from break through curve (BTC), and using tabulated values of Error-function or
inverse error function, (x-ut)f2~|3t‘ can be obtained, which in tern gives value of D
for known values of X, u, and t. Thus, each point on BTC gives one value of D, taking
the average of these, average value of D can be obtained. They aiso proposed a
graphical method in which when the transformed parameters are plotted, a straight
line is obtained. Slope of the line can be used to calculate non dimensional
dispersion coefficient. Bear(1972) has described a similar method to estimate
dispersion coefficient. The method uses differential of (2.7) wurt. & = (x-
uty/(2{t), which may be written as

C Y
2 (S) = o [ ;‘Dtg_] @8

Eq. (2.8) shows that slope of break through curve at CIC0=0.5 w.r.t. §, equals
(nD)'uz. Hence, knowing the slope, the value of D can be determined.

Fried and Combarnous{(1971) proposed the following expression for D utilizing the
property of a normal distribution function.

D
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Where, t5.16 and tg g4 are the times for the 16 and 84 percentile concentration
respectively.



3.0 STATEMENT OF THE PROBLEM

It is intended to review the different approaches of modelling dispersion and
to develop the following methods for estimation of dispersion coefficient from data
on s0il column test.

1. A simple method for quick and reliably accurate estimation using a
commercial calculator.

2. An optimization method for accurate estimation and a Fortran code for the
same.



4.0 DEVELOPMENT OF METHODOLOGY
4.1 Simple Method

A beli shaped curve is obtained when dC/dt(here, C=C/C0) is plotted against t on
natural graph. Let the coordinates of the peak of this curve be denoted by (to,m}.
Differentiating (2.7) w.r.t. t and applying the conditions at the peak we get the
following expression for D.

2

D = ‘sz .1
4mm t0

Parameters, tq and m can directly be obtained from the BTC resulting from the step
change in the input concentration. Time corresponding to C/C0 = 0.5 is given by ty
and m is the slope of BTC at this time, Knowing the values of iy and m from BTC, D
can be estimated using eq.(4.1). It is worth mentioning here that the present method
is based on the direct use of BTC which is a curve between observed variables C/CO
and t while in previous such methods transformed variables need to be plotted.
Transformed variables are € in place of t in Bear’s method and ut/x and (x—ut)/?.ﬁ
in Ogata’s method(this requires use of the table of Error-function. The present
method is free from all these restrictions and labour,

4.2 Optimization Method

The exact analytical solution of 2.1 for a step change in input
concentration is expressed by eq. (2.6). This solution does not pose any restriction
on Peclet number (ux/D). If response of unit step concentration input is known, the
parameters D and u can be estimated making use of (2.6) which can be expressed in
functional form as,

é(x,t} = f(x,t,D,u,CO) {4.2)

Where, é(.) is simulated exit concentration. With known values for C(x,t) for
different t and CO’ the parameters D and u can be optimized to get the minimum sum of
squared error between observed and simulated response at exit. The optimization
problem in this case may be formulated as,
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N
Minimize F = ' [C0x,t)-Cox,t)? 4.3)
i=1

Since, the parameters D and u appear in non linear form in (2.6), a non-linear
optimization technique can yield the parameters. In the present method,
Marquardt(1963) algorithm has been used for the monlinear optimization. The details
of the algorithm may be found in Singh(1988a,1988b). The Gauss-Newton normal equation
for (4.3) can be written as,

[ATA].AP - AT[c i 5] (4.4)
where,
- 1T
ac(x,at) 6c(x,24%) 8c(x,nat)
av av -------- _av_‘_
A= 4.5
c(x,At)  ac(x,24a1) ac(x,nat)
L aD aD ........ _*‘ED"'“-‘
and,
_ |av
AP = [AD] 4.6)

Adding a scalar A in (4.4) to allow for convergence with relatively poor
initial guess for unknown parameters (Marquardt, 1963), we get,

[ Ta AI]..%P 4.7)
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Where, I is identity matrix. Initial value of X are large and decreases towards

zero as the convergence is approached. If the convergence is achieved, the final



parameters are calculated using the following equation.
Pj = P} + aP; (4.8)

where, j denotes the number of iteration. If convergence is not achieved, P* is
updated by replacing the old values by new values and the process is repeated. aP and
F approaches zero as convergence is achieved and (4.8) gives the optimized value of
the parameter. Marquardt criteria for modifying A has been used. The derivatives
appearing in (4.7) have been computed numerically. Use of analytical expressions for
derivatives can further improve the convergence and the location of global minima.



5.0 APPLICATION TO DATA

Both the methods were applied on two sets of data (Ogata 1958) and dispersion
coefficient were estimated. The application of the simple method on data set I (u =
0.167 ft/min and x = 3.9 ft) has been illustrated in Fig. 5.1. From the figure
t0=23.2 min. and m=1/4.6 were obtained. Substituting these values in (4.1), we get
D=1.852x10" ft%/min. Ogata(1958) has reported D=2.116x10">, This indicates that the
present method can estimate dispersion coefficient with reliable accuracy. The

results of application of the optimization method on both the data set have been
tabulated below.

Data Set|Optimized |Optimized |Measured |Integral squared
D (f/min) [u (ft/min) |u (f/min)|error in relative

concentration
1 1.825x10° [0.1677 [0.167  |3.78x107%
It 3.384x107 {0.2394 (0239 |7.59x107¢

The simulated BTCs with optimized values of the parameters have been compared to
those observed for data sets I and II in Figs. 5.2 and 5.3 respectively.
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6.0 CONCLUSION

Two methods for estimation of dispersion coefficient have been developed. The
first method is very simple and makes direct use of break through curve. It can be
used for quick and reliably accurate estimation of parameters. The second method is
uses a nonliner optimization techniqgue for accurate estimation of dispersion
coefficient. This method is applicable for any value of peclet number and is based on
the minimization of integral squared error between observed and computed
concentration. A computer code in FORTRAN has been developed for the method.
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APPENDIX

DISPERSION AND ITS MODELLING

In a saturated flow through porous medium, consider a portion of flow domain
containing a solute. Let the solute be referred as ’tracer’. According to Bear{1979,
p. 227) a 'tracer’ is a labelled portion of the same liquid may be identified by its
density, colour, electrical conductivity, etc. The tracer gradually spreads and
occupies an ever-increasing portion of the flow domain, beyond the region it is
expected to occupy according to the average flow alone. The spreading caused by the
velocity variation in the direction of average flow and in the direction transverse
to it, at microscopic level is termed as ’mechanical dispersion’. Sometimes it is
called as ’convective diffusion’. The spreading of tracer from regions of higher
tracer concentration to the lower tracer concentration is generally known as
‘molecular diffusion’. 'Hydrodynamic dispersion” is a term which denotes the
spreading of tracer resulting from both mechanical dispersion and molecular
diffusion. The dispersion occur in many problems of groundwater flow, such as
pollution from concentrated and distributed source, sea water intrusion, seepage of
polluted surface water through rivers or lakes, changes in water quality due to
artificial recharge. The earliest observation of dispersion is reported by
Einstein(1905) and Slichter(1905).

Different Approaches

The exact modelling of dispersion is possible only when the boundary
conditions at the highly irregular boundaries of soil matrix at microscopic level can
correctly be defined. Since, it is impossible to define correctly the boundary of
pores in the soil matrix in mathematical form, dispersion can not be exactly modelled
microscopically. This leads to its modelling by simplified conceptualization at
macroscopic level.

The first approach of dispersion-modelling is to replace the actual medium by
a fictitious, greatly simplified, model in which mixing can be analyzed by exact
mathematical methods. Such models are often applicable for the case of single liquid
flow. Capillary tube model and cell-models fall in this group.

In the capillary-tube model, the soil matrix is assumed to be composed of a
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bundle of capillaries. Taylor(1954) studied the concentration variation along a
capillary due to the injection of a slug of a solute. Bear(1960) presented a
simplified cell-model for the study of one-dimensional dispersion. He replaced the
medium by a series of small cells with interconnecting short chanmels. He assumed
that a liquid with certain concentration upon entering a cell occupied by a liquid of
different concentration, displaces part of it, while the liquid remaining in the cell
immediately mix to form a new homogeneous liquid. The mode! considers the cell as a
perfect mixer. For a perfect mixing, movement of tracer particles due to molecular
diffusion or wrbulence, should be much faster than the average liquid flow. The
variation in the tracer concentration in the cell is given by,

% « {ci ; c} (A1)

Where, Ci, C, and C? are the tracer concentration in the liquid entering the
cell, within the cell, and leaving the cell respectively and t is the time. Bear
postulated the dispersion phenomenon as a combination of two processes 1) complete
mixing in the cell, and 2) translation from one ceil to the next through the
connecting channels. Mass balance of tracer for the jth cell can be expressed as,

B AP DA i (A2)

For a constant inflow concentration of CO in the first cell and with T =
constant for all cells, we get,

. i-1 N
CJ? = Coll-exp(—ﬂr) Z (i!)-l(hf'i)l (A3)
i=1

Stefan and Demetracopoulos(1981) presented a cell-in-series(CIS) model to
simulate riverine transport of dissolved materials. They discussed the advantages and
disadvantages of the model vis-a-vis advection-dispersion model. The lumped parameter
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in the CIS model is the number of cells into which a river reach is sub-divided. Each
cell is well mixed. They observed that a CIS model provides as good a description of
riverine transport as a one-dimensional advection dispersion model. The expression
for solute-concentration in the n® cell of the river-reach is expressed as,

C (0 = % v (A%)
where,

o =1T,and T = V/Q (A5)
in which,

T = cell residence time,

V = cell volume,

Q = flow rate within the cell,

M = mass of tracer injected, and;
1 = time

Although, the CIS model is widely used in chemical engineering, it has not
proved to be of great practical use in meodelling longitudinal dispersion in
groundwater.

The basic idea behind statistical approach is to apply the rules of
probability theory and to predict the spatial distribution of cloud of many tracer
particles, which initially were at close proximity and then move under the average
condition of flow. Needless to mention that the tracking of individual tracer
particle is impossible. This approach considers random motion of tracer particles.
The probability distribution of the location of a single tracer particie may be
interpreted as the spatial relative-concentration distribution of a cloud of tracer
particles originating from the neighbourhood of a certain point at a certain time and
moving under the same average conditions. Pioneering work employing this approach for
dispersion modelling is by Scheidegger(1954). Other early investigators are
Danckwerts(1953) and Aris(1956). A better insight of the dispersion phenomena and
relationships between dispersion and the medium characteristics have been provided by
Bear and Bachmat{1965,66) while suggesting essentially a statistical approach.
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In natural soil matrix, one often encounters regions of varying permeability
which give rise to the stagnant water pockets collectively known as 'dead zones' and
interconnected bigger pores that allow a part of solute to travel faster than the
rest. These invalidates assumption of homogeneity. Thus, the effect of these are not
modelled in ADE approach. Aggrepated dead zone (ADZ) approach has the scope for the
interpretation of dead zones and fast flow of solutes. Bear and Young(1984)
introduced ADZ model essentially for dispersion modelling in stream but can also be
used for transport modelling in groundwater. ADZ model may be termed as an extension
to CIS model. The main difference of ADZ model from the CIS model is that a pure time
delay is introduced into the input concentration which allows advection and
dispersion to be decoupled.

If n identical cells are placed in series with same cell-time delay for each

cell, the differential equation for solute balance can be written as,

vED - qc e -Qo (A6)

and, the solute concentration in nth cell is given by,

(o:(t-t)) M -a(t—t)
C (t) (@-1)! v e (AT)

Eq. (A6} can be rewritten in discrete form as,

C™ = 2 ™1 4 (1.9) P! (A8)
where, C and Cu are the d
denotes time-step, a is a constant, and 8=t/At denotes number of time-steps for cell-
time delay. Precisely, a=exp(-aat).
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The method outlined above can be generalized in which several first order ADZ
elements with different time constants(«), and time delays(z) or combined in series
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and/or parallel. The tracer can also be considered non conservative. The following
transfer-Function (TF) representation describe a generalized multi-order model in
discrete form.

m+1 _ m m-1 m-2 m-i m-3
C = aOC + a1C + a2C + ..+ aiC + bOCu

+ b, OBl p 82 l:njc’]‘;‘""j (A9)

Eq. (A8) is the simplified form of (A9). The above equation is a powerful and
flexible model. The only difficulty is to determine i, and j, and the coefficients
a, and bj. These can be estimated using a parameter estimation technique. Recursive
estimation of parameters is best suited for this. Eq. (A9) can conveniently be
expressed in the form of different TF operators, viz, differential, backward shift or
laplacian operator and the parameters of the TF can be estimated suitably. In
backward shift operator, this TF takes the following form,

-1 -p

by + bZ " + ... + bz
cm=2 L P cm-3 (A10)
1+aIZ + ... +azd
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